Stability of maize hybrids under drought, rainfed and optimum field conditions revealed through GGE analysis

Main Article Content

Ramesh Kumar
Yashmeet Kaur
Abhijit K. Das
Shyam B. Singh
Bhupender Kumar
Manish B. Patel
Jai P. Shahi
Pervez H. Zaidi

Abstract

Identification of high-yielding and stable cultivars across different environments through multi-location trials are very important in
maize breeding. A study was conducted to evaluate 30 maize hybrids in three diverse environments, viz., drought, rainfed and optimal
conditions during the years, 2016 and 2017. Environments, genotypes and Genotype × Environment interactions (G × E) were found
to be highly significant in both the years. The biplot explained 69.49% of total variation which was partitioned into 53.61 and 15.88%
relative to genotype and genotype by environment interaction. Genotype, ZH15449 performed considerably well in 2016 under optimum(113.41 q/ha) and drought (54.19 q/ha) while in 2017, under optimum (82.28 q/ha) and rainfed (65.37 q/ha) conditions. ZH 161285 gaveconsiderable grain yield at all three ecologies (108.70, 74.29, 60.60 q/ha) in year 2016, whereas genotype, ZH 161330 performed wellunder rainfed (67.76 q/ha) and drought (52.87q/ha) conditions in year 2017.

Article Details

How to Cite
Kumar, R. ., Kaur, Y. ., Das, A. K. ., Singh, S. B. ., Kumar, B. ., Patel, M. B. ., Shahi, J. P. ., & Zaidi, P. H. . (2023). Stability of maize hybrids under drought, rainfed and optimum field conditions revealed through GGE analysis. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 83(04), 499–507. https://doi.org/10.31742/ISGPB.83.4.6
Section
Research Article
Author Biographies

Manish B. Patel, Maize Research Station, Godhra 389001, Gujarat, India

Principal Scientist (Plant Breeding), All India Network Project on Tobacco, Agricultural Research Station, Nippani, University of Agricultural Sciences, Dharwad, Karnataka, India.

Pervez H. Zaidi, International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India.

Professor and Dean (Agri), Department of Crop Physiology, College of Agriculture, Kalburgi, University of Agricultural Sciences, Raichur, Karnataka, India

References

Alam, M. A., Seetharam, K., Zaidi, P. H., Dinesh, A., Vinayan, M. T. and Nath, U. K., 2017, Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Res., 204: 110-119. https://doi.org/10.1016/j.fcr.2017.01.006

Angela, P., Mateo, V., Gregorio, A., Francisco, R., Marco, L., Jose, C. and Juan, B. 2015, GEA-R (Genotype × Environment Analysis with R for Windows) Version 4.1. CIMMYT: El-Batan, Mexico. https://hdl.handle.net/11529/10203

Archana, K. A., Kuchanur, P. H., Zaidi, P. H., Mandal, S. S., Arunkumar, B., Patil, A., Seetharam, K. and Vinayan, M. T., 2018, Stability for grain yield and other traits in tropical maize (Zea mays L.) under heat stress and optimal conditions. Int. J. Curr. Microbiol. App. Sci., 7 (11): 815-823. https://doi.org/10.20546/ijcmas.2018.711.096

Cicchino, M., Edreira, J. I. and Otegui, M. E., 2010, Heat stress during late vegetative growth of maize: effects on phenology and assessment of optimum temperature. Crop Sci., 50: 1431–1437. https://doi.org/10.2135/cropsci2009.07.0400

Divya, Kuchanur, P. H., Zaidi, P. H., Sowmya, H. C., Dhanoji, M. M., Seetharam, K. and Vinayan, M. T., 2019, Stability of maize (Zea mays L.) hybrids across heat stress environments. Maize J., 8(2): 69-76.

Eberhart, S. A. and Russel, W. A., 1966, Parameters for comparing varieties. Crop Sci., 6: 36-40.

FAO, 2015, Climate change and food security: risks and responses. https://www.fao.org/3/i5188e/I5188E.pdf

Finlay, K. W. and Wilkinson, G. N., 1963, Analysis of adaptation in plant breeding programme. Aust. J. Agric. Res., 14: 742-754.

Gazala, P., Kuchanur, P. H., Zaidi, P. H., Arunkumar, B., Patil, A., Seetahram, K. and Vinayan, M. T., 2019, Evaluation of tropical maize hybrids for seed yield and its related traits under heat stress environment (Zea mays L.). J. Pharmacogn. Phytochem., 8(4): 1840-1845. https://www.phytojournal.com/archives/2019/vol8issue4/PartAE/8-4-214-616.pdf

Geetha, N., Kuchanur, P. H., Zaidi, P. H., Arunkumar, B., Dhanoji, M. M., Seetharam, K. and Vinayan, M. T., 2019, Combining ability and heterosis of maize (Zea mays L.) doubled haploid lines derived from heat tolerant populations. Maize J., 8(2): 77-84.

Hansen, J., Hellin, J., Rosenstock, T., Fisher, E., Cairns, J., Stirling, C., Lamanna, C., Etten, J. V., Rose, A. and Campbell, B., 2019, Climate risk management and rural poverty reduction. Agric. Syst., 172: 28-46. https://doi.org/10.1016/j.agsy.2018.01.019

Haruna, A., Adu, G. B., Buah, S. S., Kanton, R. A. L., Kudzo, A. I., Seidu, A. M. and Kwadwo, O., 2017, Analysis of genotype by environment interaction for grain yield of intermediate maturing drought tolerant top-cross maize hybrids under rain-fed conditions. Cogent Food Agric., 3: 1-13. https://doi.org/10.1080/23311932.2017.1333243

Hosamani, M., 2019, Studies on genetic gains with genomic selection for heat stress tolerance in maize (Zea mays L.). Ph. D (Agri.) Thesis, Univ. Agric. Sci., Raichur, Karnataka (India).

Hosamani, M., Shankergoud, I., Zaidi, P. H., Patil, A., Vinayan, M. T., Kuchanur, P. H., Seetharam, K. and Somasekhar, 2020, Genetic gain in testcrosses derived from heat tolerant multi-parental synthetic populations of maize. Int. J. Curr. Microbiol. App. Sci., 9(1): 2195-2205. https://doi.org/10.20546/ijcmas.2020.901.249

Jodage, K., Kuchanur, P. H., Zaidi, P. H., Patil, A., Seetharam, K., Vinayan, M. T. and Arunkumar, B., 2018, Genetic analysis of heat adaptive traits in tropical maize (Zea mays L.). Int. J. Curr. Microbiol. App. Sci., 7(1): 3237-3246. https://doi.org/10.20546/ijcmas.2018.701.387

Nisa, V., Nisa, W., Dar, Z. A., Wani, M. A., Gupta, V., Kak, A. and Jacob, S. R., 2019, Impact of climate change on maize productivity. The Pharma Innov. J., 8(2): 83-94. https://www.thepharmajournal.com/archives/?year=2019&vol=8&issue=2&ArticleId=2998

Patil, V. S., 2021, Genetic analysis for heat stress tolerance in hybrids developed from heat resilient double haploid lines of tropical maize (Zea mays L.). Ph. D (Agri.) Thesis, Univ. Agric. Sci., Raichur, Karnataka (India).

Patil, V. S., Doggalli, G., Kuchanur, P. H., Zaidi, P. H., Patil, A., Arunkumar, B., Vinayan, M. T., Tembhurne, B. V., Suma, T. C. and Seetharam, K., 2022, Assessing combining ability of doubled haploid maize (Zea mays L.) breeding lines for grain yield and yield components under heat stress condition. Int. J. Plant Soil Sci., 34(22): 510-518. https://hdl.handle.net/10883/22279

Pavani, N., Kuchanur, P. H., Patil, A., Arunkumar, B., Zaidi, P. H., Vinayan, M. T. and Seetharam, K., 2019, Stability analysis of stress-resilient maize (Zea mays L.) hybrids across stressed and non-stressed environments. Int. J. Curr. Microbiol. App. Sci., 9: 252-260. https://www.ijcmas.com/special/9/N.%20Pavani,%20et%20al.pdf

Prasanna, B. M., Cairns, J. E., Zaidi, P. H., Beyene, Y., Makumbi, D., Gowda, M., Magorokosho, C., Zaman‑Allah, M., Olsen, M., Das, A., Worku, M., Gethi, J., Vivek, B. S., Nair, S. K., Rashid, Z., Vinayan, M. T., Issa, A. R. B., Vicente, F. S., Dhliwayo, T. and Zhang, X., 2021, Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor. Appl. Genet., 134: 1729-1752. https://doi.org/10.1007/s00122-021-03773-7

Sowmya, H. H., Kamatar, M. Y., Shanthakumar, G., Brunda, S. M., Shadakshari, T. V., Showkathbabu, B. M. and Rajput, S. S., 2018, Stability analysis of maize hybrids using Eberhart and Russel model. Int. J. Curr. Microbiol. App. Sci., 7(2): 3336-3343. https://doi.org/10.20546/ijcmas.2018.702.399

Vinayan, M. T., Zaidi, P. H., Seetharam, K., Alam, M. A., Ahmed, S., Koirala, K. B., Arshad, M., Kuchanur, P. H., Patil, A. and Mandal, S. S., 2019, Environmental variables contributing to differential performance of tropical maize hybrids across heat stress environments in South Asia. Aust. J. Crop Sci., 13(06): 828-836. https://www.cropj.com/vinayan_13_6_2019_828_836.pdf

Vinayan, M. T., Zaidi, P. H., Seetharam, K., Das, R. R., Viswanadh, S., Ahmed, S., Miah, M. A., Koirala, K. B., Tripathi, M. P., Arshad, M., Pandey, K., Chaurasia, R., Kuchanur, P. H., Patil, A. and Mandal, S. S., 2020, Genotype-by-Environment interaction effects under heat stress in tropical maize. Agronomy, 10(12): 1998. https://doi.org/10.3390/agronomy10121998

Waqas, M. A., Wang, X., Zafar, S. A., Noor, M. A., Hussain, H. A., Nawaz, M. A. and Farooq, M., 2021, Thermal stresses in maize: effects and management strategies. Plants, 10(2): 293. https://doi.org/10.3390/plants10020293

Weaich, K., Bristow, K. L. and Cass, A., 1996, Modeling preemergent maize shoot growth: II. High temperature stress conditions. Agron. J., 88(3): 398-403. https://doi.org/10.2134/agronj1996.00021962008800030007x

Zaidi, P. H., Zaman-Allah, M., Trachsel, S., Seetharam, K., Cairns, J. E. and Vinayan, M. T., 2016, Phenotyping for abiotic stress tolerance in maize - Heat stress: A field manual. CIMMYT: Hyderabad, India. pp.32. https://hdl.handle.net/10883/4821

Most read articles by the same author(s)