Evaluation of Rice Germplasm for Tolerance to Multiple Abiotic Stresses Using Multivariate Techniques and Molecular Markers
Main Article Content
Abstract
Rice productivity and sustainability in rainfed areas has become increasingly threatened by both drought and flooding due to climate change. Identification of new germplasm resources with tolerance to both high and low extremes of precipitation is required to meet the impelling demand of climate resilient varieties. To identify promising accessions with tolerance to both drought and submergence, the rice landraces of the rainfed ecologies in Eastern India were evaluated under drought and submergence, both at seedling and germination stages of the crop. The marker-based survey of nine DTY QTLs for grain yield under drought and SUB1 locus for submergence tolerance was also undertaken. Seventeen accessions were potentially identified to carry one or more DTY QTLs. Most the genotypes found to carry the SUB1A-1gene, however their survival rate under 14 days of complete submergence varied widely (0.58-92.4%). Multivariate analysis using important traits of abiotic stress conditions, identified Dular and Kalakeri as the most promising genotypes along a few gora cultivars. The promising genotypes identified in this study would be utilized for developing climate resilient rice varieties as well as for understanding the molecular basis of adaptation to multiple abiotic stresses.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Angaji S. A., Septiningsih E. M., Mackill D. J. and Ismail A. M. 2010. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 172: 159–168. doi: 10.1007/s10681-009-0014-5
Anupam A., Imam J., Quatadah S. M., Siddaiah A., Das A. P., Variar M. and Mandal, N. 2017. Genetic diversity analysis of rice germplasm in Tripura state of Northeast India using drought and blast linked markers. Rice Sci., 24: 10–20. doi: 10.1016/j.rsci.2016.07.003
Aravind J, Mukesh Sankar S, Wankhede D P, K. V. 2021. augmentedRCBD: Analysis of Augmented Randomised Complete Block Designs. R package version 0.1.5.9000.
Barik J., Kumar V., Lenka S. K. and Panda D. 2019. Genetic potentiality of lowland indigenous indica rice (Oryza sativa L.) landraces to anaerobic germination potential. Plant Physiol. Rep., 24: 249–261. doi: 10.1007/s40502-019-00441-3
Beena R., Kirubakaran S., Nithya N., Manickavelu A., Sah R.P., Abida P.S., Sreekumar J., Jaslam P.M., Rejeth R., Jayalekshmy V.G. and Roy S. 2021. Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces. BMC Plant Biol., 21: 1–21. doi: 10.1186/s12870-021-03272-3
Bernier J., Kumar A., Ramaiah V., Spaner D. and Atlin, G. 2007. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci., 47: 507-516. doi: 10.2135/cropsci2006.07.0495
Bin Rahman A.N.M. and Zhang J. 2018. Preferential geographic distribution pattern of abiotic stress tolerant rice. Rice, 11: 1-16. doi:10.1186/s12284-018-0202-9
Bin Rahman A.N.M. and Zhang J. 2022. The Coexistence of Flood and Drought Tolerance: An Opinion on the Development of Climate-Smart Rice. Front. Plant Sci., 13: 8-11. doi: 10.3389/fpls.2022.860802
Dilley M., 2005. Natural disaster hotspots: a global risk analysis . Vol. 5. World Bank Publications.
IRRI. 2013. SES: Standard Evaluation System for Rice, 5th edn. International Rice Research Institute, Manila, Philippines.
Ismail A.M., Ella E.S., Vergara G.V. and Mackill D.J., 2009. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Bot., 103: 197–209. doi: 10.1093/aob/mcn211
ISTA. 2003. ISTA handbook on seedling evaluation. 3rd ed. International Seed Testing Association.
Kamoshita A., Babu R.C., Boopathi N.M. and Fukai S. 2008. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res., 109: 1–23. doi: 10.1016/j.fcr.2008.06.010
Kretzschmar T., Pelayo M.A.F., Trijatmiko K.R., Gabunada L.F.M., Alam R., Jimenez R., Mendioro M.S., Slamet-Loedin I.H., Sreenivasulu N., Bailey-Serres J. and Ismail A.M. 2015. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat. Plants, 1: 1-5. doi: 10.1038/nplants.2015.124
Kumar A., Dixit S., Ram T., Yadaw R.B., Mishra K.K. and Mandal N.P. 2014. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. J. Exp. Bot., 65: 6265-6278.
Lozano‐Isla F., Benites‐Alfaro O.E. and Pompelli M.F., 2019. GerminaR: An R package for germination analysis with the interactive web application “GerminaQuant for R” Ecol. Res., 34: 339–346. doi: 10.1111/1440-1703.1275
Mach K.J., Kraan C.M., Adger W.N., Buhaug H., Burke M., Fearon J.D., Field C.B., Hendrix C.S., Maystadt J.F., O’Loughlin J. and Roessler P. 2019. Climate as a risk factor for armed conflict. Nature, 571:193-197.
Magneschi L. and Perata P. 2009. Rice germination and seedling growth in the absence of oxygen. Ann. Bot., 107: 49–63. doi: 10.1093/aob/mcq212
Miro B. and Ismail A.M. 2013. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front. Plant Sci., 4: 1–18. doi: 10.3389/fpls.2013.00269
Miro B., Longkumer T., Entila F.D., Kohli A. and Ismail A.M. 2017. Rice seed germination underwater: morpho-physiological responses and the bases of differential expression of alcoholic fermentation enzymes. Front. Plant Sci., 8: 1857. doi: 10.3389/fpls.2017.01857
Mukherjee M., Padhy B., Srinivasan B., Mahadani P., Baksh S.Y., Donde R., Singh O.N., Behera L., Swain P. and Dash S.K. 2018. Revealing genetic relationship and prospecting of novel donors among upland rice genotypes using qDTY-linked SSR markers. Rice Sci., 25: 308–319. doi: 10.1016/j.rsci.2018.10.001
Narsai R., Edwards J.M., Roberts T.H., Whelan J., Joss G.H. and Atwell B.J. 2015. Mechanisms of growth and patterns of gene expression in oxygen‐deprived rice coleoptiles. Plant J., 82: 25–40. doi: 10.1111/tpj.12786
Oe S., Sasayama D., Luo Q., Fukayama H., Hatanaka T. and Azuma T. 2022. Growth responses of seedlings under complete submergence in rice cultivars carrying both the submergence-tolerance gene SUB1A-1 and the floating genes SNORKELs. Plant Prod. Sci., 25: 70–77. doi:10.1080/1343943X.2021.1943465
Palanog A.D., Swamy B.M., Shamsudin N.A.A., Dixit S., Hernandez J.E., Boromeo T.H., Cruz P.C.S. and Kumar, A. 2014. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crops Res., 161:46-54.
Pucciariello C. 2020. Molecular mechanisms supporting rice germination and coleoptile elongation under low oxygen. Plants, 9: 1–11. doi: 10.3390/plants9081037
Ray S., Vijayan J. and Sarkar R.K. 2016. Germination stage oxygen deficiency (GSOD): an emerging stress in the era of changing trends in climate and rice cultivation practice. Front. Plant Sci., 7: 671.
Redona E.D. and Mackill D.J. 1996. Genetic variation for seedling vigor traits in rice. Crop Sci., 36: 285-290.
Roy S., Banerjee A., Kumar J., Verma B. C., and Mandal N. P. 2021. Genetic Diversity of Gora Rice (Oryza sativa L.) Landraces of Chotanagpur Plateau Region in Eastern India. Ind. J. Plant Genet. Resour., 34: 196–205. doi: 10.5958/0976-1926.2021.00018.8
Roy S., Verma B.C., Banerjee A., Kumar J., Ray U.S. and Mandal, N.P. 2021. Genetic diversity for drought and low-phosphorus tolerance in rice (Oryza sativa L.) varieties and donors adapted to rainfed drought-prone ecologies. Sci. Rep., 11: 1–9. doi: 10.1038/s41598-021-93325-2
Sandhu N. and Kumar A. 2017. Bridging the rice yield gaps under drought: QTLs, genes, and their use in breeding programs. Agronomy, 7:27. doi: 10.3390/agronomy7020027
Sandhu N., Dixit S., Swamy B.P.M., Raman A., Kumar S., Singh S.P., Yadaw R.B., Singh O.N., Reddy J.N., Anandan A. and Yadav S. 2019. Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice, 12: 8. doi: 10.1186/s12284-019-0269-y
Sandhu N., Singh A., Dixit S., Sta Cruz M.T., Maturan P.C., Jain R.K. and Kumar A. 2014. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet., 15: 1-15.
Sarkar R.K., Panda D., Reddy J.N., Patnaik S.S.C., Mackill D.J. and Ismail A.M. 2009. Performance of submergence tolerant rice (Oryza sativa) genotypes carrying the Sub1 quantitative trait locus under stressed and non-stressed natural field conditions. Ind. J. Agril. Sci., 79: 876–883.
Shrestha R., Al‐Shugeairy Z., Al‐Ogaidi F., Munasinghe M., Radermacher M., Vandenhirtz J. and Price A.H. 2014. Comparing simple root phenotyping methods on a core set of rice genotypes. Plant Biol., 16: 632-642.
Singh N., Dang T., Vergara G.V., Pandey D.M., Sanchez D., Neeraja C.N., Septiningsih E.M., Mendioro M., Tecson-Mendoza E.M., Ismail A.M. and Mackill D.J. 2010. Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor. Appl. Genet., 121: 1441-1453.
Turner N.C. 1981. Techniques and experimental approaches for the measurement of plant water status. Plant Soil, 58: 339–366.
Venuprasad R., Bool M.E., Quiatchon L., Sta Cruz M.T., Amante M. and Atlin G.N. 2012. A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol. Breed., 30: 535-547. doi: 10.1007/s11032-011-9642-2
Venuprasad R., Dalid C.O., Del Valle M., Zhao D., Espiritu M., Sta Cruz M.T., Amante M., Kumar A. and Atlin G.N. 2009. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor. Appl. Genet., 120: 177-190.
Verulkar S.B., Mandal N.P., Dwivedi J.L., Singh B.N., Sinha P.K., Mahato R.N., Dongre P., Singh O.N., Bose L.K., Swain P. and Robin S. 2010. Breeding resilient and productive genotypes adapted to drought-prone rainfed ecosystem of India. Field Crops Res., 117: 197-208. doi: 10.1016/j.fcr.2010.03.005
Vijayan J., Senapati S., Ray S., Chakraborty K., Molla K.A., Basak N., Pradhan B., Yeasmin L., Chattopadhyay K. and Sarkar R.K. 2018. Transcriptomic and physiological studies identify cues for germination stage oxygen deficiency tolerance in rice. Environ. Exp. Bot., 147: 234–248. doi: 10.1016/j.envexpbot.2017.12.013
Vikram P., Swamy B.P., Dixit S., Ahmed H.U., Teresa Sta Cruz M., Singh A.K. and Kumar A. 2011. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet., 12:1-15.
Widawsky D.A. and O’toole J.C. 1996. Prioritizing the rice research agenda for eastern India. Rice research in asia: progress and priorities, CAB International, Wallingford, Oxon, UK,109–130.
Xu K. and Mackill D.J. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed., 2: 219-224.
Xu K., Xu X., Fukao T., Canlas P., Maghirang-Rodriguez R., Heuer S., Ismail A.M., Bailey-Serres J., Ronald P.C. and Mackill D.J. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442: 705-708.