Multi-trait-based identification of water use efficient genotypes in bread wheat (Triticum aestivum L.)
Main Article Content
Abstract
The present study was conducted to identify high-yielding and water-use-efficient bread wheat genotypes. Seventeen genotypes were grown at three irrigation levels (WL), including 100, 80, and 60% of the reference evapotranspiration (ET), which were estimated based on a decision support tool. The pooled analysis of variance depicted significant genotype × environment interactions (GEI) (p <0.001) for all the traits studied, except number of tillers/sq. m and NDVI before reproductive phase (NDVIB) and NDVI after reproductive phase (NDVIA). The average grain yield (GY) at 100% ET was 5178 kg ha-1, which was reduced by 5.28 and 11.40% at 80 and 60% ET, respectively. NDVIB and NDVIA were remarkably decreased by 22.09 and 11.38% at 60% ET. The water use efficiency (WUE) showed an increasing trend with reduced irrigation levels and varied from 1.72-1.90, 1.93-2.30, and 2.27-2.85 kg m-3 at 100, 80, and 60% ET, respectively. The GY and WUE revealed positive and significant correlation (r=0.99***) at the 60% ET. The genotypes, namely 40th ESWYT-33, 40th ESWYT-07, 40th ESWYT-37 and RWP-2018-32, were found promising for GY and WUE at 80% ET, while 40th ESWYT-07 also performed better at the 60% ET.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abbate P. E., Dardanelli J. L., Cantarero M. G. Maturano M., Melchiori R. J. M and Suero E. E. 2004. Climatic and Water Availability Effects on Water‐Use Efficiency in Wheat. Crop Sci., 44(2): 474–483. https://doi.org/10.2135/cropsci2004.4740
Asoka A., Gleeson T., Wada Y. and Mishra V. 2017. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci., 10(2): 109–117. https://doi.org/10.1038/ngeo2869
Asoka A. and Mishra V. 2020. A Strong Linkage between Seasonal Crop Growth and Groundwater Storage Variability in India. J. Hydrometeorol., 22(1): 125–138. https://doi.org/10.1175/JHM-D-20-0085.1
Banerjee K., Krishnan P. and Das B. 2020. Thermal imaging and multivariate techniques for characterizing and screening wheat genotypes under water stress condition. Ecol. Indic., 119: 106829. https://doi.org/10.1016/j.ecolind.2020.106829
Christopher M., Paccapelo V., Kelly A., Macdonald B., Hickey L., Richard C., Verbyla A., Chenu K., Borrell A., Amin A. and Christopher J. 2021. QTL identified for stay-green in a multi-reference nested association mapping population of wheat exhibit context dependent expression and parent-specific alleles. Field Crops Res., 270: 108181. https://doi.org/10.1016/j.fcr.2021.108181
Condorelli G. E., Maccaferri M., Newcomb M., Andrade-Sanchez P., White J. W., French A. N., Sciara G., Ward R. and Tuberosa R. 2018. Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front. Plant Sci., 9: 893.
Dencic S., Kastori R., Kobiljski B. and Duggan B. 2000. Valuation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica, 113(1): 43–52. https://doi.org/10.1023/A:1003997700865
Fan Y., Wang C. and Nan Z. 2018. Determining water use efficiency of wheat and cotton: A meta-regression analysis. Agric. Water Manag., 199: 48–60. https://doi.org/10.1016/j.agwat.2017.12.006
Hazratkulova S., Sharma R. C., Alikulov S., Islomov S., Yuldashev T., Ziyaev Z., Khalikulov Z., Ziyadullaev Z. and Turok J. 2012. Analysis of genotypic variation for normalized difference vegetation index and its relationship with grain yield in winter wheat under terminal heat stress. Plant Breeding, 131(6): 716–721. https://doi.org/10.1111/pbr.12003
Jain M., Fishman R., Mondal P., Galford G.L., Bhattarai N., Naeem S., Lall U., Balwinder S and DeFries R. S. 2021. Groundwater depletion will reduce cropping intensity in India. Science Advances, 7(9): eabd2849. https://doi.org/10.1126/sciadv.abd2849
Khandelwal V., Reddy S., Satyavathi C. T., Gupta, P. C., Jain S. K., Mungra K. D., Tripathi M. K., Yadav D., Solanki R. K. and Patroti P. 2024. Identification of stable cultivars of pearl millet (Pennisetum glaucum (L.) R. Br.) based on GGE Biplot and MTSI index. Indian J. Genet. Plant Breed., 84(04): 668-678.
Khedwal R.S., Chaudhary A., Sindhu V. K., Yadav D. B., Kumar N., Chhokar R. S., Poonia T. M., Kumar Y. and Dahiya S. 2023. Challenges and technological interventions in rice–wheat system for resilient food–water–energy-environment nexus in North-western Indo-Gangetic Plains: A review. Cereal Res. Commun., https://doi.org/10.1007/s42976-023-00355-9
Kumar M., Mishra V. K., Chand R., Sharma S., Kumar U., Jaiswal J. P., Choudhary M., Mahato A., Ashutosh Singh P. and Joshi A. K. 2023. NDVI and grain fill duration are important to be considered in breeding for terminal heat stress tolerance in wheat. Agron. Crop Sci., 209(4): 489–501. https://doi.org/10.1111/jac.12637
Kumar R., Harikrishna, Barman, D., Ghimire, O. P., Gurumurthy, S., Singh, P. K., Chinnusamy, V., Padaria J. C and Arora A. 2022. Stay-green trait serves as yield stability attribute under combined heat and drought stress in wheat (Triticum aestivum L.). J. Plant Growth Regul., 96(1): 67–78. https://doi.org/10.1007/s10725-021-00758-w
Kumar V., Shekhawat P. S., Kumar S., Gangwar O. P., Tyagi B. S., Gupta A., Gupta V. and Singh G. P. 2025. Inheritance studies for stripe rust and identification of multiple rust resistant genotypes in bread wheat (Triticum aestivum L.). Indian J. agric. Sci., 95(4): 371-375. https://doi.org/10.56093/ijas.v95i4.154766
Meena R. P., Karnam V., Rinki, Sharma R. K., Tripathi S. C. and Singh, G. P. 2019. Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India. Agric. Water Manag., 223: 105709. https://doi.org/10.1016/j.agwat.2019.105709
Mishra V., Asoka A., Vatta K. and Lall U. 2018. Groundwater Depletion and Associated CO2 Emissions in India. Earth’s Future, 6(12): 1672–1681. https://doi.org/10.1029/2018EF000939
Mohammed N., El-Hendawy S., Alsamin B., Mubushar M and Dewir Y. H. 2023. Integrating Application Methods and Concentrations of Salicylic Acid as an Avenue to Enhance Growth, Production, and Water Use Efficiency of Wheat under Full and Deficit Irrigation in Arid Countries. Plants, 12(5): 1019. https://doi.org/10.3390/plants12051019
Nataraj V., Bhartiya, A., Singh, C.P, Devi, H.N., Deshmukh, M.P., Verghese, P., Singh, K., Mehtre S. P., Kumari V., Maranna S., Kumawat G., Ratnaparkhe M. B., Satpute G. K., Rajesh V., Chandra S., Ramteke R., Khandekar N. and Gupta S. 2021. WAASB-based stability analysis and simultaneous selection for grain yield and early maturity in soybean. Agron. J., 113: 3089–3099.
Olivoto T. and Lucio A. D. 2020. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol., 11(6): 783–789. https://doi.org/10.1111/2041-210X.13384
Olivoto T., Lucio A. D., Silva J. A. G., Marchioro V. S., Souza V. Q. and Jost E. 2019a. Mean performance and stability in multi-environment trials I: Combining Features of AMMI and BLUP techniques. Agron. J., 111 (6): 2949–2960. https://doi.org/10.2134/agronj2019.03.0220
Olivoto T., Lucio A. D., Silva J. A. G., Sari B. G. and Diel M. I. 2019b. Mean performance and stability in multi-environment trials II: Selection based on multiple traits. Agron. J., 111(6): 2961–2969. https://doi.org/10.2134/agronj2019.03.0221
Patel R., Parmar D. J., Kumar S., Patel D. A., Memon J., Patel M. B. and Patel J. K. 2023. Dissection of genotype× environment interaction for green cob yield using AMMI and GGE biplot with MTSI for selection of elite genotype of sweet corn (Zea mays conva. Saccharata var. rugosa). Indian J. Genet. Plant Breed., 83(01): 59-68.
Rosa L., Chiarelli D. D., Rulli M. C., Dell’Angelo J. and D’Odorico P. 2020. Global agricultural economic water scarcity. Science Advances, 6(18): eaaz6031. https://doi.org/10.1126/sciadv.aaz6031
Sahadevan D. K. and Pandey A. K. 2023. Groundwater over-exploitation driven ground subsidence in the himalayan piedmont zone: Implication for aquifer health due to urbanization. J. Hydrol., 617: 129085. https://doi.org/10.1016/j.jhydrol.2023.129085
Tomar S. M. S. and Kumar G. T. 2004. Seedling survivability as a selection criterion for drought tolerance in wheat. Plant Breed., 123(4): 392-394. https://doi.org/10.1111/j.1439-0523.2004.00993.x
UNESCO World Water Assessment Programme. 2018. Nature-based solutions for water, world water development report. https://www.unwater.org/publications/world-water-development-report-2018
Wang Z., Hu H., Jiang X., Tao Y., Lin Y., Wu F., Hou S., Liu S., Li C., Chen G. and Liu Y. 2020. Identification and Validation of a Novel Major Quantitative Trait Locus for Plant Height in Common Wheat (Triticum aestivum L.). Front. Genet., 11: 602495. https://doi.org/10.3389/fgene.2020.602495
Wurschum T., Langer S. M., Longin C. F. H., Tucker M. R. and Leiser W. L. 2017. A modern Green Revolution gene for reduced height in wheat. The Plant J., 92(5): 892–903. https://doi.org/10.1111/tpj.13726
Yadvinder, Kukal S. S., Jat M. L. and Sidhu H. S. 2014. Improving Water Productivity of Wheat-Based Cropping Systems in South Asia for Sustained Productivity. In Advances in Agronomy (Vol. 127, pp. 157–258). Elsevier. https://doi.org/10.1016/B978-0-12-800131-8.00004-2
Zhao W., Liu L., Shen Q., Yang J., Han X., Tian F. and Wu J. 2020. Effects of Water Stress on Photosynthesis, Yield, and Water Use Efficiency in Winter Wheat. Water, 12(8): 2127. https://doi.org/10.3390/w12082127