Assessing heat tolerance in groundnut (Arachis hypogaea L.) through the MGIDI approach

Main Article Content

R. J. Shreeraksha
Spurthi Nayak
Babu N. Motagi
Ramesh S. Bhat
S. K. Prashanthi
Pasupuleti Janila

Abstract

Groundnut (Arachis hypogaea L.) productivity is constrained by high temperature and drought stress. The present study used the multi-trait genotype-ideotype distance index (MGIDI) to evaluate genotypes under post-rainy conditions and identify heat-tolerant lines. Four superior genotypes (ICGV 07222, ICGV 03043, ICGV 13312, ICGV 03042) were selected with 86.66% success at 15% selection intensity. High selection gains for traits such as pod yield per plant, heat use efficiency, photothermal use efficiency, heliothermal use efficiency, shelling percentage, test weight, canopy temperature, haulm weight and SPAD chlorophyll meter reading highlighted their role as key indicators of heat tolerance.

Downloads

Download data is not yet available.

Article Details

How to Cite
Shreeraksha , R. J., Nayak, S., Motagi, B. N., Bhat, R. S., Prashanthi , S. K., & Janila, P. (2025). Assessing heat tolerance in groundnut (Arachis hypogaea L.) through the MGIDI approach. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 85(04), 671–674. https://doi.org/10.31742/ISGPB.85.4.16
Section
Short Research Article

References

Abadya S., Shimelis H., Pasupuleti J., Mashilo J., Chaudhari S. and Manohar, S. S., 2021. Assessment of the genetic diversity of groundnut (Arachis hypogaea L.) genotypes for kernel yield, oil and fodder quantity and quality under drought conditions. Crop Science, 61(3), pp.1926-1943. https://doi.org/10.1002/csc2.20483

Ajinath S. S., Kumar M. N., Ramya V., Sudini H. K., Janila P. and Shankar V. G., 2022. Enhancing resistance to aflatoxin in groundnut through seed coat-mediated lignification. Indian J. Genet. Plant Breed., 82(04). https://www.isgpb.org/journal/index.php/IJGPB/article/view/3794

Akbar A., Singh Manohar S., Tottekkaad V. M., Kurapati S. and Pasupuleti J., 2017. Efficient partitioning of assimilates in stress-tolerant groundnut genotypes under high-temperature stress. Agronomy, 7(2), p.30. https://doi.org/10.3390/agronomy7020030

Aravind B., Nayak S. N., Choudhary R. S., Gandhadmath S. S., Prasad P. V. V., Pandey M. K., Bhat R. S., Puppala N., Latha P., Sudhakar P. and Varshney R. K., 2022. Integration of genomics approaches in abiotic stress tolerance in groundnut (Arachis hypogaea L.): An overview. Genomic Designing for Abiotic Stress Resistant Oilseed Crops, pp.149-197. https://doi.org/10.1007/978-3-030-90044-1_4

Aravind, B., Shreeraksha, R. J., Poornima, R., Ravichandran D., Krishnaraj, P. U., Chimmad, V. P., Mirajkar, K. K., Bagewadi, B., Janila, P., Pandey, M. K., Varshney, R. K. and Nayak, S. N., 2024. Impact of heat stress on physiological characteristics and expression of heat shock proteins (HSPs) in groundnut (Arachis hypogaea L.). Physiol. Mol. Biol. Plants. https://doi.org/10.1007/s12298-024-01520-y

Barkley N. A., Upadhyaya H. D., Liao B. and Holbrook C. C., 2016. Global resources of genetic diversity in peanut. In Peanuts (pp. 67-109). AOCS Press. https://dx.doi.org/10.1016/B978-1-63067-038-2.00003-4

Bhat R. S., Shirasava K, Sharma V, Isobe S. N., Hirakawa H., Kuwata C., Pandey M. K., Varshney R. K. and Gowda M. V. C., 2021. Population Genomics of Peanut. In: Rajora, O.P. (eds) Population Genomics: Crop Plants. Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2021_88

Debnath P., Chakma K., Bhuiyan M. S. U., Thapa R., Pan R. and Akhter D., 2024. A Novel Multi Trait Genotype Ideotype Distance Index (MGIDI) for Genotype Selection in Plant Breeding: Application, Prospects, and Limitations. Crop Design, p.100074. https://doi.org/10.1016/j.cropd.2024.100074

Gangurde S. S., Kumar R., Pandey A. K., Burow M., Laza H. E., Nayak S. N., Guo B., Liao B., Bhat R. S., Madhuri N. and Hemalatha S., 2019. Climate-smart groundnuts for achieving high productivity and improved quality: current status, challenges, and opportunities. Genomic designing of climate-smart oilseed crops, pp.133-172. https://doi.org/10.1007/978-3-319-93536-2_3

IPCC., 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115.

Janila P., Manohar S. S., Patne N., Variath M. T. and Nigam S. N., 2016. Genotype× environment interactions for oil content in peanut and stable high‐oil‐yielding sources. Crop Science, 56 (5), pp.2506-2515. https://doi.org/10.2135/cropsci2016.01.0005

Janila P., Nigam S. N., Pandey M. K., Nagesh P. and Varshney R. K., 2013. Groundnut improvement: use of genetic and genomic tools. Front. Plant Sci., 4, p.23. https://doi.org/10.3389/fpls.2013.00023

Kadirimangalam S. R., Bagudam R., Mathew A., Deshmukh D. and Pasupuleti J., 2022. Breeding Groundnut Cultivars for Resilience to Climate Change Effects. Developing Climate Resilient Grain and Forage Legumes, pp.141-165. https://doi.org/10.1007/978-981-16-9848-4_7

Koraddi S., Rao V. S., Rani M. G., Sreekanth B., Kumar V. M. and Umar N., 2020. Screening groundnut (Arachis hypogaea L.) genotypes for resistance to early, late leaf spot and rust disease under natural epiphytotic conditions. J Pharmacogn Phytochem., 9 (1), pp.1174-1177.

Mathew A., Ahamed M. L., Raghavendra M., Prakash K. K. and Pasupuleti J., 2023, Phenotypic Characterization of Groundnut (Arachis hypogaea L.) Genotypes Based on Shoot and Root Mass Indices Using Temperature Induction Response (TIR) Approach. The Andhra Agric. J., 70 (3): 324-330

Motagi B. N., Bhat R. S., Pujer S., Nayak S. N., Pasupaleti J., Pandey M. K., Varshney R. K., Bera S. K., Pal K. K., Mondal S. and Badigannavar A. M., 2022. Genetic enhancement of groundnut: current status and future prospects. Acc. Plant Breed., Volume 4: Oil Crops, pp.63-110. https://doi.org/10.1007/978-3-030-81107-5_3

Naidu G. K., Motagi B. N. and Gowda M. V. C., 2016. Potential sources of resistance to multiple biotic stresses in groundnut (Arachis hypogaea L.). The Ecoscan-An International Quarterly Journal of Environmental Sciences, 9, pp.509-515.

Olivoto T and Lucio AD (2020) metan: An R package for multi-environment trial analysis. Methods Ecol. Evol., 11: 783-789. https://doi.org/10.1111/2041-210X.13384

Olivoto T and Nardino M (2021) MGIDI: towards an effective multivariate selection in biological experiments. Bioinform., 10. https://doi.org/10.1093/bioinformatics/btaa981

Pandey M. K., Gangurde S. S., Shasidhar Y., Sharma V., Kale S. M., Khan A. W., Shah P., Joshi P., Bhat R. S., Janila P. and Bera S. K., 2024. High-throughput diagnostic markers for foliar fungal disease resistance and high oleic acid content in groundnut. BMC Plant Biol., 24(1), p.262. https://doi.org/10.1186/s12870-024-04987-9

Prasad P. V. V., Craufurd P Q and Summerfield R J, 1999, Sensitivity of peanut to timing of heat stress during reproductive development. Crop Science, 39:1352–1357. https://doi.org/10.2135/cropsci1999.3951352x

Prasad P. V. V., Craufurd P. Q., Summerfield R. J. and Wheeler T. R., 2000. Effects of short episodes of heat stress on flower production and fruit‐set of groundnut (Arachis hypogaea L.). J. Exp. Bot., 51 (345), pp.777-784. https://doi.org/10.1093/jexbot/51.345.777

Puppala N., Nayak S. N., Sanz-Saez A., Chen C., Devi M. J., Nivedita N., Bao Y., He, G., Traore S. M., Wright D. A. and Pandey M. K., 2023. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Front. Genet., 14, p.1121462. https://doi.org/10.3389/fgene.2023.1121462

R Core Team (2024) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

https://www.R-project.org/

Rani K., Ajay B. C., Bera S. K., Mahatma M. K., Singh S., Gangadhara K., Rathnakumar A. L., Kona P., Kumar N. and Rajanna G. A., 2024. Genetic exploration of variability and environmental influence on yield, components, and nutritional properties among groundnut germplasm originated from different countries for identification of potential stable donors. Genet. Resour. Crop Evol., 71(5), pp.2077-2090. https://doi.org/10.1007/s10722-023-01761-y

Rathnakumar A. L., Singh R., Parmar D. L. and Misra J. B. (2013). Groundnut: a crop profile and compendium of notified varieties of India, Directorate of Groundnut Research, P.B.No.5, Junagadh-362 001, Gujarat, India. 118p.

Raza A., Bashir S., Khare T., Karikari B., Copeland R. G., Jamla M., Abbas S., Charagh S., Nayak S. N., Djalovic I., Rivero R. M., Siddique K. H. M. and Varshney R. K. (2024). Temperature‐smart plants: A new horizon with omics‐driven plant breeding. Physiol.Plant, 176 (1), p. e14188. https://doi.org/10.1111/ppl.14188

Rocha J. R. do A. S. de C., Machado J. C. and Carneiro P. C. S. (2018). Multitrait index based on factor analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy. Glob. Change Biol. Bioenergy, 10 (1), 52–60. https://doi.org/10.1111/gcbb.12443

Sharma V., Gangurde S. S., Nayak S. N., Gowda A. S., Sukanth B. S., Mahadevaiah S. S., Manohar S. S., Choudhary R. S., Anitha T., Malavalli S. S. and Srikanth S. N., 2023. Genetic mapping identified three hotspot genomic regions and candidate genes controlling heat tolerance-related traits in groundnut. Front. Plant Sci., 14, p.1182867. https://doi.org/10.3389/fpls.2023.1182867

Sukanth B. S. (2022). Molecular analysis of physiological and productivity traits under high-temperature stress in groundnut (Arachis hypogaea L.). M.Sc. thesis. University of Agricultural Sciences, Dharwad, India.

Team, P., 2023. RStudio: Integrated development environment for R. Posit software, PBC.

Uday C. Jha, Harsh Nayyar, Sanjeev Gupta, " Heat Stress In Food Grain Crops: Plant Breeding and Omics Research ", Bentham Science Publishers (2020). https://doi.org/10.2174/97898114739821200101