Unveiling genetic diversity, fingerprinting, phenotypic and molecular characterization of rice (Oryza sativa L.) germplasm from Northeast India using SRAP and TRAP markers

Main Article Content

Konsam Sarika
Irengbam Meghachandra Singh
Ngangkham Umakanta Singh
Elangbam Lamalakshmi Devi
Harendra Verma
Ayam Gangarani Devi
Amit Kumar
Salam Gunamani Singh
Suvajit Karak
Thokchom Repahini Devi
Chongtham Chinglen Meetei
Ramgopal Laha

Abstract

Northeast India, a part of the Indo-Burma biodiversity hotspot, harbours the richest genetic diversity reservoir for agricultural crops. The region is not only a centre of origin of rice but also a critical area where conservation of genetic diversity in crops is required. The analysis of 197 landraces/germplasm using phenotypic, genotypic and combined genotypic/phenotypic distances revealed ample genetic variation in the collections. Multivariate analysis for phenotypic variability indicated that 11 out of 13 phenotypic traits assessed were useful in discriminating the genotypes. Cluster analysis based on phenotypic data distinguished three clusters, while a corresponding analysis with SRAP and TRAP markers indicated four groups. Also, the combined analysis for the phenotypic and genotypic data provided four distinct clusters, revealing valuable information about the diversity among economically important agronomic traits. The present study also partitions the genotypes into distinct heterotic groups, thereby making it possible for parental selection and hybridization to maximize genetic diversity in the rice breeding program. Moreover, two combinations of SRAP and SRAP5 (ME01 and EM10) and SRAP6 (ME01 and EM07) with four TRAP combinations, TRAP1 (Auxr1 and FT14), TRAP2 (Auxr1 and T03), TRAP3 (Auxr1 and FT14) and TRAP5 (Auxr1 and T13) with high informative PIC score, greater than 0.70 effectively discriminated the current collections/genotypes for a robust fingerprint system.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sarika, K., Singh, . I. M. ., Ngangkham Umakanta Singh, Devi, E. L. ., Verma, H. ., Devi, A. G. ., Kumar, A. ., Singh, S. G. ., Karak, S. ., Devi, T. R. ., Meetei, C. C. ., & Laha, R. . (2025). Unveiling genetic diversity, fingerprinting, phenotypic and molecular characterization of rice (Oryza sativa L.) germplasm from Northeast India using SRAP and TRAP markers. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 85(03), 389–397. https://doi.org/10.31742/ISGPB.85.3.4
Section
Research Article
Author Biographies

Irengbam Meghachandra Singh, ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Lamphelpat 795 004 Imphal, Manipur, India.

Principal Scientist

Seed Technology

Ngangkham Umakanta Singh, ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Lamphelpat 795 004 Imphal, Manipur, India.

Senior scientist

Plant biotechnology

Elangbam Lamalakshmi Devi, ICAR Research Complex for Northeastern Hill Region, Sikkim Centre, Tadong 737 102, Gangtok, Sikkim, India.

Scientist

Genetics and Plant Breeding

Harendra Verma, ICAR Research Complex for Northeastern Hill Region- Nagaland Centre, Medziphema, Nagaland, India

Scientist

Genetics and Plant Breeding

Ayam Gangarani Devi, ICAR Research Complex for Northeastern Hill Region- Tripura Centre, Lembucherra, Tripura, India

Scientist

Plant Physiology

Amit Kumar, ICAR Research Complex for Northeastern Hill Region- Umiam, Meghalaya, India

Senior Scientits

Genetics and Plant Breeding

Salam Gunamani Singh, ICAR- Krishi Vigyan Kendra Imphal West, Lamphelpat, Manipur, India

SMS

Genetics and Plant Breeding

Suvajit Karak, College of Agriculture, Central Agricultural University, Iroisemba, Imphal, Manipur, India

Student

Genetics and Plant Breeding

Thokchom Repahini Devi, ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Lamphelpat 795 004 Imphal, Manipur, India.

SRF

Agronomy

Chongtham Chinglen Meetei, ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Lamphelpat 795 004 Imphal, Manipur, India.

YP-II

Genetics and Plant Breeding

Ramgopal Laha, ICAR Research Complex for Northeastern Hill Region, Manipur Centre, Lamphelpat 795 004 Imphal, Manipur, India.

HoRC,

Animal Science

References

Aggarwal R. K., Brar D. S., Nandi S., Huang N., and Khush G. S. 1999. Phylogenetic relationships among Oryza species revealed by AFLP markers. Theoretical and Applied Genetics, 98: 1320–1328.

Agre P., Asibe F., Darkwa K., Bauchet G., Asiedu R., Adebola P., and Asfaw A. 2019. Phenotypic and molecular assessment of genetic structure and diversity in a panel of winged yam (Dioscorea alata) clones and cultivars. Scientific Reports, 9: 18221. https://doi.org/10.1038/s41598-019-54761-3·

Alves A. A., Bhering L. L., Rosado T. B., Laviola B. G., Formighieri E. F., and Cruz C.D. 2013. Joint analysis of phenotypic and molecular diversity provides new insights on the genetic variability of the Brazilian physic nut germplasm bank. Genetics and Molecular Biology, 36 (3): 371-81. doi: 10.1590/S1415-47572013005000033.

Anna Durai., Tomar J. M. S., Premila Devi., Arunachalam A., and Mehta H. 2015. Rice Diversity – The Genetic Resource Grid of North-East India. Indian Journal Plant Genetic Resources, 282: 205-212. DOI 10.5958/0976-1926.2015.00024.8.

Barakat M.N., Al-Doss A.A., Elshafei A.A., Ghazy A.I., and Moustafa K.A. 2013. Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits. Australian Journal of Crop Science, 7(1): 104–111. https://search.informit.org/doi/10.3316/informit.142880179622753

Bhoite K. D., Pardeshi S. R., and Chaure J. S. 2023. Genetic diversity studies in selected elite genotypes and released varieties of Rice. Journal of Cereal Research 15(1).

Borah R., Bhattacharjee A., Rao S. R., Kumar V., Sharma P., Upadhaya K., and Choudhury H. 2021. Genetic diversity and population structure assessment using molecular markers and SPAR approach in Illicium griffithii a medicinally important endangered species of Northeast India. Journal of Genetic Engineering and Biotechnology, 1019(1): 118. doi: 10.1186/s43141-021-00211-5.

Budak H., Shearman R.C., Parmaksiz I. and Dweikat I. 2004. Comparative analysis of seeded and vegetative biotype buffalo grasses based on phylogenetic relationship using ISSRs SSRs RAPDs and SRAPs. Theoretical and Applied Genetics, 109: 280–288 https://doi.org/10.1007/s00122-004-1630-z

Choudhury B., Khan M. L., and Dayanandan S. 2013. Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India. Springerplus, 19: 2(1), 228. doi: 10.1186/2193-1801-2-228.

Collard B. C., Jahufer M. Z. Z., Brouwer J. B. and Pang E. C. K. 2005. An introduction to markers quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 142(1–2): 169–196.

Culley T. M., and Wolfe A. D. 2001. Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity, 86: 545–556.

da Silva E. F., de Sousa S. B., da Silva G. F., Sousa N. R., Filho F. J. N., and Hanada R. E. 2016. TRAP and SRAP markers to find genetic variability in complex polyploidy Paullinia cupana var. Sorbilis. Plant Gene, 6: 43–47.

Dai X. J., Yang Y. Z., and Zhou L. 2012. Analysis of indica- and japonica-specific markers of Oryza sativa and their applications. Plant Systematics Evolution, 298: 287–296. https://doi.org/10.1007/s00606-011-0543-y

Devarumath R.M., Kalwade, S.B., Bundock, P., Eliott, F.G. and Henry, R. 2013) Independent target region amplification polymorphism and single-nucleotidepolymorphism marker utility in genetic evaluation of sugarcane genotypes. Plant Breeding, 132: 736–747

El-Shahed A. A., Kamal F. A., Ibrahim A. I., Amany M. M., Inas Z. A., and Osama A. E. 2017. Efficiency of sequence related amplified polymorphism (SRAP) and target region amplified polymorphism (TRAP) markers in detecting banana somaclonal variants. African Journal of Biotechnology, 16(16), 879-888.

Ferriol M., Picó, B. and Nuez F. 2003. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 107: 271–282. https://doi.org/10.1007/s00122-003-1242-z

Ferriol M., Pico B., Fernandez de., Cordova P., and Nuez F. 2004. Molecular diversity of a germplasm collection of squash (Cucurbita moschata) determined by SRAP and AFLP markers. Crop Science, 442: 653-664.

Gabriel O., Romero., Cheryl A., and Zosimo B. 2009. Genetic fingerprinting: Advancing the frontiers of crop biology research. Philippine Science Letters, 2: 8-13.

Guo D., Zhang J., and Liu C. 2012. Genetic variability and relationships between and within grape cultivated varieties and wild species based on SRAP markers. Tree Genetics and Genomes, 8: 789–800. https://doi.org/10.1007/s11295-011-0464-5

Hore D. K. 2005. Rice diversity collection conservation and management in North-eastern India. Genetic Resources and Crop Evolution, 52: 1129–1140.

Hu J., and Vick B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Molecular Biology Reporter, 21: 289–294. doi: 10.1007/BF02772804.

Hu J., Ochoa O. E., Truco M. J., and Vick B. A. 2005. Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica, 44: 225–235. doi: 10.1007/s10681-005-6431-1.

Huang H., Lu J., Ren Z., Hunter W., Dowd S.E. and Dang P. 2011. Mining and validating grape (Vitis L.) ESTs to develop EST-SSR markers for genotyping and mapping. Molecular Breeding, 28: 241–254. https://doi.org/10.1007/s11032-010-9477-2

Huang Y. H., Ku H. M., Wang C. A., Chen L. Y., He S. S., Chen S., Liao P. C., Juan P. Y., and Kao C. F. 2022. A multiple phenotype imputation method for genetic diversity and core collection in Taiwanese vegetable soybean. Frontier in Plant Science, 13: 948349. doi: 10.3389/fpls.2022.948349

Ikkurti G., Rai A., and Rai M. 2022. Association between Phenotypic and Genotypic Distance Matrices of Advanced Breeding Lines of Lowland Rice (Oryza Sativa L.) from Diverse Parents. International Journal of Environment and Climate Change, 12(6): 33-38. https://doi.org/10.9734/ijecc/2022/v12i630684.

Kaur H., Sarao N. K., Vikal Y., Singh K., and Sharma R. C. 2011. Microsatellite Fingerprinting of Maize Cultivars (Zea mays L.. Cereal Research Communications 39(4): 507–514. http://www.jstor.org/stable/23792316

Kaur S., Cogan N. O. I., Forster J. W., and Paull J. G. 2014. Assessment of Genetic Diversity in Faba Bean Based on Single Nucleotide Polymorphism. Diversity, 6: 88-101. https://doi.org/10.3390/d6010088.

Khidr Y. A., Mekuriaw S. A., Hegazy A. E., and Amer E. 2020. Suitability of target region amplified polymorphism (TRAP) markers to discern genetic variability in sweet sorghum Journal of Genetic Engineering and Biotechnology, 618(1): 59. doi: 10.1186/s43141-020-00071-5. PMID: 33025316; PMCID: PMC7538518.

Koopman W. J., Wissemann V., De Cock K., Van Huylenbroeck J., De Riek J., Sabatino G. J., and Visser D. 2008. AFLP markers as a tool to reconstruct complex relationships: A case study in Rosa (Rosaceae. American Journal of Botany, 95: 353–366.

Kumar , S., Vimal , S. C., Meena , R. P., Prasad , L., Luthra , S., Srikanth , B., Kumar , A. and Pal , R. K. 2024. Multivariate Analysis to Study Genetic Diversity for Yield and its Attributing Traits in Rice (Oryza sativa L.. International Journal of Environment and Climate Change, 14(1): 788–795. DOI:https://doi.org/10.9734/ijecc/2024/v14i13897

Laursen K. H., Schjoerring J. K., Olesen J. E., Askegaard M., Halekoh U., and Husted S. 2011. Multielemental Fingerprinting as a Tool for Authentication of Organic Wheat Barley Faba Bean and Potato. Journal of Agricultural and Food Chemistry, 59(9): 4385–4396.

Levi A., and Thomas C. E. 2007. DNA markers from different linkage regions of watermelon genome useful in differentiating among closely related watermelon genotypes. HortScience, 42: 210–214.

Li G., and Quiros C. F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103: 455–461

Lou Y., Lin X., He Q., Guo X., Huang L., and Fang W. 2010. Analysis on genetic relationship of Puji-bamboo species by AFLP and SRAP. Molecular Plant Breeding, 8: 83–88.

Luo C., Wu H. X., Yao Q. S., Wang S. B., and Xu W. T. 2015. Development of EST-SSR and TRAP markers from transcriptome sequencing data of the mango. Genetics and Molecular Research, 14(3): 7914–7919. doi: 10.4238/2015.July.14.17.

Malik R. K., Gupta R. K., Singh C. M., Brar S. S., and Singh S. S. 2008. Accelerating the adoption of resource conservation technologies for farm level impact on sustainability of rice–wheat system of the Indo-Gangetic plains. National Agricultural Technology Project Progress Report Chaudhary Charan Singh Haryana Agricultural University Haryana India.

Menzo V., Giancaspro A., Giove S., Nigro D., Zacheo S., Colasuonno P., Marcotuli I., Incerti O., Blanco A., and Gadaleta A. 2013. TRAP molecular markers as a system for saturation of the genetic map of durum wheat. Euphytica, 194: 151–160. doi: 10.1007/s10681-013-0891-5.

Mirajkar S. J., Rai A. N., Vaidya E. R., Moharil M. P., Dudhare M. S., and Suprasanna P. 2017. TRAP and SRAP molecular marker based profiling of radiation induced mutants of sugarcane (Saccharum officinarum L.) Plant Gene, 9: 64–70. doi: 10.1016/j.plgene.2017.01.002.

Murray M. G., and Thompson W. F. (1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321-4325.

Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A. B., and Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–858. PMID: 10706275.

Pathak V., Prasuna C. H., Umakanth B., Surekha K., Subbarao L.V., and Padmavathi G. 2024. Genetic variability association and diversity analysis of yield and its component traits in rice (Oryza sativa) germplasm. Indian Journal of Agricultural Sciences. doi: 10.56093/ijas.v94i7.146835

Ravi M., Geethanjali S., Sameeyafarheen F., and Maheswaran M. 2003. Molecular marler based genetic diversity analysis in rice (Oryza sativa L.) using RAPD and SSR markers. Euphytica, 133: 243-252.

Ren H., Wei Z., Zhou B., Chen X., Gao Q., and Zhang Z. 2023. Molecular marker development and genetic diversity exploration in Medicago polymorpha Peerj, 16(11) e14698. doi: 10.7717/peerj.14698.

Robarts D. W., and Wolfe AD. 2014. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology: Application in Plant Science, 11: 2(7), doi: 10.3732/apps.1400017. PMID: 25202637; PMCID: PMC4103474.

Roy Choudhury D., Singh N., Singh A. K., Kumar S., Srinivasan K., and Tyagi R. K. 2014. Analysis of Genetic Diversity and Population Structure of Rice Germplasm from North-Eastern Region of India and Development of a Core Germplasm Set. PLoS ONE, 9(11), e113094. https://doi.org/10.1371/journal.pone.0113094

Sartie A., Asiedu R. and Franco J. 2012. Genetic and phenotypic diversity in a germplasm working collection of cultivated tropical yams (Dioscorea spp.. Genetic Resources and Crop Evolution, 59: 1753–65. https://doi.org/10.1007/s10722-012-9797-7

Scossa F., Alseekh S.and Alisdair R.F. 2021. Integrating multi-omics data for crop improvement. Journal of Plant Physiology, 257: 153352

Sheeba A., Yogameenakshi P., Aananthi N., Sasikumaran S., and Vimala G. 2023. “Studies on Genetic Diversity and Variability in Rice (Oryza Sativa L.) Genotypes”. International Journal of Plant and Soil Science, 3520: 1237-43. https://doi.org/10.9734/ijpss/2023/v35i203922

Simões K. S., Silva S. A., Machado E. L., and Silva MS. 2017. Genetic divergence in elite castor bean lineages based on TRAP markers. Genetics and Molecular Research, 16(3): 1–12. doi: 10.4238/gmr16039776.

Singh S. P., Nodari R., Gepts P. and Singh S. P. (1991. Genetic diversity in cultivated common bean: I. allozymes. Crop Science, 31: 19–23. https:// doi.org/10.2135/cropsci1991.0011183X003100010004x

Smith J. S. C., and Smith O. S., (1992. Fingerprinting Crop Varieties. Advances in Agronomy, 47: 85-140.

Suman A., Ali K., Arro J., Parco A. S., Kimbeng C. A., and Baisakh N. 2012. Molecular diversity among members of the Saccharum complex assessed using TRAP markers based on lignin-related genes. BioEnergy Research, 5:197–205. doi: 10.1007/s12155-011-9123-9.

Thamaraiselvi S.P., Raja A.A., Geethanjali S., Raja P. and Karthikeyan S. 2024. Diversity Analysis for Phenotypic and Qualitative Traits of Broad Bean (Vicia faba L.): an Underutilized Vegetable Crop of India by Multivariate Analysis. Legume Research, 1-8. LR-5347

Umamaheswar N., Roy , S. K., Kundu , A., Hijam , L., Chakraborty , M., Sen S., Das , B., Barman R., and Vishnupriya , S. 2024. Genetic Variability and Character Association Studies in Diverse Rice (Oryza sativa L.) Genotypes for Agro-Morphological Traits in Terai Region of West Bengal. Journal of Advances in Biology and Biotechnology, 27(5): 805–820. DOI:https://doi.org/10.9734/jabb/2024/v27i5843.

Vandemark G. J., Ariss J. J., Bauchan G. A., Larsen R. C., and Hughes T. J. 2006. Estimating genetic relationships among historical sources of alfalfa germplasm and selected cultivars with sequence related amplified polymorphisms. Euphytica, 152: 9-16.

Vanlalsanga Singh S. P. and Singh Y. T. 2019. Rice of Northeast India harbor rich genetic diversity as measured by SSR markers and Zn/Fe content. BMC Genetics, 20: 79. https://doi.org/10.1186/s12863-019-0780-6

Vos P., Hogers R., Bleeker M., Reijans M., Lee T., Hornes M., and Zabeau M. (1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407–4414.

Wang D., Wu J., Tan W., Pu Z., and Yan W. 2007. Genetic relationship of high starch sweet potato germplasm of Sichuan by SRAP. Southwest China Journal of Agricultural Sciences, 20: 506–509

Williams J., Kubelik A., Livak K., Rafalski J., and Tingey S. (1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18: 6531–6535.

Yang W., Bai Z., and Wang F. 2022. Analysis of the genetic diversity and population structure of Monochasma savatieri Franch. ex Maxim using novel EST-SSR markers. BMC Genomics, 23: 597. https://doi.org/10.1186/s12864-022-08832-x

Youssef M., James A. C., and Rivera-Madrid R. 2011. Musa Genetic Diversity Revealed by SRAP and AFLP. Molecular Biotechnology, 47: 189–199. https://doi.org/10.1007/s12033-010-9328-8

Zhang Y., Zhang X., Hua W., Wang L., and Che Z. 2010. Analysis of genetic diversity among indigenous landraces from sesame (Sesamum indicum L.) core collection in China as revealed by SRAP and SSR markers. Genes and Genomics, 32(3): 207-215.

Zietkiewicz E., Rafalski A., and Labuda D. (1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176–183.

Most read articles by the same author(s)

1 2 > >>