Phenotypic assessment of RILs of an interspecific biparental population (IR29/Oryza glaberrima Steud.) for seedling salinity tolerance and exploration QTL/haplotype in African rice (O. glaberrima S.) genome

Main Article Content

Abhishek Mazumder
Megha Rohilla
Subbaiyan Gopalakrishnan
Paresh Chandra Kole
Tapan Kumar Mondal

Abstract

Salinity is one of the most predominant abiotic stress factors affecting crop production across the planet earth. Rice is canonically a glycophytic species that becomes sensitive to salinity stress, especially at the seedling and early reproductive growth stage. Several studies have explored the potential of African rice (Oryza glaberrima Steud.) and its interspecific progenies to be salinity tolerant at the seedling stage of growth. In this context, we tested an interspecific biparental (IR29/O. glaberrima Steud.) recombinant inbred lines (RIL) population in the present study for seedling salinity tolerance and identified a few extreme tolerant and sensitive RILs in the population and assigned (SES = 3; highly tolerant) and (SES = 9; highly sensitive) scores to the contrasting RILs in salinity stress. A few relevant parameters had been scored and a majority had shown very sharp contrast in phenotype in parents and extreme RILs. A higher ratio of stress/control phenotypic data had been observed in extreme tolerant RILs, whereas the ratio was much lower in the opposite extreme lines indicating the probable regulation of seedling salinity-related parameters by QTL region(s). Also, an assessment of the parental genotypes with Saltol QTL-specific SSR markers revealed the possibility of the existence of a novel QTL region in our African rice accession. Hence, this study opens an avenue for the discovery and mapping of novel QTL/candidate genes for seedling salinity tolerance that can be further utilized in rice breeding programs for improvement in stress tolerance in high-yielding cultivars.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mazumder, A., Rohilla, M., Gopalakrishnan, S., Kole, P. C., & Mondal, T. K. (2024). Phenotypic assessment of RILs of an interspecific biparental population (IR29/Oryza glaberrima Steud.) for seedling salinity tolerance and exploration QTL/haplotype in African rice (O. glaberrima S.) genome. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 84(04), 644–651. https://doi.org/10.31742/ISGPB.84.4.15
Section
Research Article

References

Alam R., Rahman S.M., Seraj I.Z., Thomson J.M., Ismail M.A., Tumimbang R. and Gregorio B.G. 2011. Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed., 130:430–437.

Arnon I.D. 1949. Copper enzymes in isolated polyphenol oxidase in Beta vulgaris. Plant Physiol., 24:1-16.

Awala K.S., Nanhapo I.P., Sakagami I.J., Kanyomeka L. and Iijima M. 2010. Differential salinity tolerance among Oryza glaberrima, Oryza sativa and their interspecies including NERICA. Plant Prod. Sc., 13(1): 3-10.

Bonilla P., Dvorak J., Mackill D., Deal K. and Gregorio G. 2002. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa l.) using recombinant inbred lines. Philipp Agric Sci., 85:68–76.

Dasgupta S., Hossain M.M., Huq M. and Wheeler D. 2014. Climate change, soil salinity, and the economics of high-yield rice production in Coastal Bangladesh. In Policy Research Working Paper no. WPS 7140.

Doyle J.J. and Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bulletin., 19: 11-15.

FAO, 2021. The State of Food and Agriculture.

Ganie S.A., Molla K.A., Henry R.J., Bhat K.V. and Mondal T.K. 2019. Advances in understanding salt tolerance in rice. Theor. Appl. Genet., 132(4): 851-870.

Ganie S.A., Pani D.R. and Mondal T.K. 2017. Genome-wide analysis of DUF221 domain containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. PLoS ONE., 12(8):e0182469 1-27

García Morales S. et al. 2012. Growth, photosynthetic activity, and potassium and sodium concentration in rice plants under salt stress. Acta Sci. Agron., 34: 317–324.

Ghesquiere A., Sequier J., Second G. and Lorieux M. 1997. First steps towards a rational use of African rice, Oryza glaberrima, in rice breeding through a ‘contig line’ concept. Euphytica., 96:31–39.

Gregorio G.B., Senadhira D. and Mendoza R.D. 1997. Screening rice for salinity tolerance. IRRI discussion paper series no. 22. International Rice Research Institute, Los Ban˜os, Laguna, Philippines.

Gregorio G.B., Senadhira D., Mendoza R.D., Manigbas N.L., Roxas J.P. and Guerta C.Q. 2002. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res., 76: 91–101.

Gumi A.M., Guha P.K., Mazumder A., Jayaswal P. and Mondal T.K. 2018. Characterization of OglDREB2A gene from African rice (Oryza glaberrima), comparative analysis and its transcriptional regulation under salinity stress. 3 Biotech., 8(2):91, 1-16.

IRRI. 2011. Stress and disease tolerance: Breeding for salt tolerance in rice. http://www.knowledgebank.irri.org/ricebreedingcourse/bodydefault.htm.

Ismail A.M., S Heuer., M.J. Thomson., M. Wissuwa., 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol., 65:547-570.

Jing W., Deng P., Cao C. and Zhang W. 2017. Fine mapping of qSKC-1, a major quantitative trait locus for shoot K+ concentration, in rice seedlings grown under salt stress. Breed. Sc., 67(3): 286–295.

Kader A.M. and Lindberg S. 2008. Cellular traits for sodium tolerance in rice (Oryza sativa L.). Pl. Biotech., 25:1667-1677.

Khush G.S. and Virk P.S. 2005. IR varieties and their impact. Los Baños (Philippines): International Rice Research Institute. 163 p.

Lichtenthaler K.H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol., 148:350–382.

Lin H.X., Zhu M.Z., Yano M., Gao J.P., Liang Z.W., Su W.A., Ren Z.H. and Chao D.Y. 2004. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor. Appl. Genet., 108:253–260.

Leon D.B.T., Linscombe S. and Subudhi K.P. 2016. Molecular dissection of seedling stage salinity tolerance in rice. Rice 9(52),:1–22.

Linares O.F. 2002. African rice (Oryza glaberrima): history and future potential. Proc. Natl. Acad. Sci., 99:16360–16365.

Mazumder A., Rohilla M., Bisht D.S., Krishnamurthy, S.L., et al. 2020. Identification and mapping of quantitative trait loci (QTL) and epistatic QTL for salinity tolerance at seedling stage in traditional aromatic short grain rice landrace Kolajoha (Oryza sativa L.) of Assam, India. Euphytica., 216:75, 1-18.

Mondal T.K., Panda A.K., Rawal H.C. and Sharma T.R. 2018. Discovery of microRNA-target modules of African rice (Oryza glaberrima) under salinity stress. Sci. Rep., 8:570, 1-11.

Mondal T.K., Rawal H.C., Chowrasia S., Varshney D., et al. 2018. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci. Rep. 8(13698): 1-13.

Negrao S., Courtois B., Ahmadi N., Abreu I., Saibo N. and Oliveira M.M. 2011. Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci., 30:329–377.

Pandit A., Rai V., Bal S., Sinha S., et al. 2010. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics., 284(2):121-136.

Platten J.D., Egdane J.A. and Ismail A.M. 2013. Salinity tolerance, Na+ exclusion and allele mining of HKT1;5 in Oryza sativa and O. glaberrima: many sources, many genes, one mechanism?. BMC Plant Biol., 13:32 1-16.

Portères R. 1956. Taxonomie Agrobotanique des Riz cultivés O. sativa L. et O. glaberrima Steudel. J Agric Trop Bot Appliquée., 3:341–384.

Prodjinoto H., Gandonou C. and Lutts S. 2017. Screening for salinity tolerance of Oryza glaberrima Steud. seedlings. African J. Agril. Res., 13(12): 561-573.

Redona D.E. 2013. Standard evaluation system (SES) for rice, 5th edn. International Rice Research Institute, Los Baños.

Sarla N. and Swamy B.P.M. 2005. Oryza glaberrima: a source for the improvement of Oryza sativa. Curr Sci., 89:955–963.

Schneider C.A., Rasband W.S. and Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods., 9:671-675

Singh D.P. and Sarkar R.K. 2014. Distinction and characterization of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Func. Plant Biol., 41:727-736.

Teeken B. 2015. African rice (Oryza glaberrima) cultivation in the Togo hills: ecological and socio-cultural cues in farmer seed selection and development. Ph.D. Dissertation, Wageningen University & Research, Centre for Crop Systems Analysis, Wageningen

School of Social Sciences (WASS).

Vaughan D.A., Morishima H. and Kadowaki K. 2003. Diversity in the Oryza genus. Curr. Opin. Plant Biol., 6:139–146.

Walia H., Wilson C., Zeng L., Ismail A., Condamine P. and Close T. 2007. Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol. Biol., 63:609-623.

Wang M., Yu Y., Haberer G., Marri P.R., et al. 2014. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat. Genet. 46:982–988.

WARDA. 1997. West Africa rice development association. Annual report 1996. Mbé, Côte d’Ivoire.

World Bank: Climate Change Impacts in Drought and Flood Affected Areas: Case Studies in India. 2008. Report No. 43946-IN. Pp. 1-162.

Yoshida S., Forno D.A, Cock J.H. and Gomez K.A. 1976. Laboratory manual for physiological studies of rice. IRRI, Las Banos, Laguna., pp.83.

Zhang, Y., Zhang, S., Zhang, J., Wei, W., et al. 2023. Improving rice eating and cooking quality by enhancing endogenous expression of a nitrogen-dependent floral regulator. Pl. Biotech. J., 21:2654-2670.