Differential gene effectiveness and blast disease progression in MAS derived NILs in the background of aromatic rice landrace Mushk Budji

Main Article Content

Haroon R. Wani
Saba Mir
Raheel S. Khan
Noor- ul-Ain
Gazala H. Khan
Najeeb-ul-Rehman Sofi
Asif B. Shikari


Mushk Budji is a premium quality scented rice landrace of Kashmir, which is highly susceptible to rice blast cause by Magnaporthe oryzae with more than 70% grain yield loss. Near-isogenic lines (NILs), namely, SKUA-27-4-40-9, SKUA-27-20-10-2 and SKUA-27-13-5-1, for the blast resistance genes, Pi54, Pi1and Pita were successfully developed in the background of Mushk Budji. Marker-assisted foreground selection was carried out using gene-based and closely linked markers viz., Pi54 MAS (Pi54), RM224 (Pi1) and YL155/87 (Pita). The background analysis was done with 90 genome-wide distributed SSR markers linked to previously tagged SNPs, which helped in estimating the recurrent parent genome (RPG) recovery in the NILs. An area under the disease progress curve (AUDPC) was drawn to test the effectiveness of the individual-resistance genes in the developed NILs. A differential reaction pattern exhibited by the individual genes helped validate the respective genes’ effectiveness under the Kashmir conditions. The Pi54 and Pita were found to be effective in conferring resistance towards M. oryzae infection in the NILs of Mushk Budji.

Article Details

How to Cite
Wani, H. R. ., Mir, S. ., Khan, R. S. ., ul-Ain, N.-., Khan, G. H. ., Sofi, N.- ul-R. ., & Shikari, A. B. (2023). Differential gene effectiveness and blast disease progression in MAS derived NILs in the background of aromatic rice landrace Mushk Budji. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 83(03), 335–342. https://doi.org/10.31742/ISGPB.83.3.5
Research Article


Allard, R. W. 1960. Principles of Plant Breeding. John Whiley Sons Inc. New York, pp. 150.

Campbell, C. L. and Madden, L. V. 1990. Introduction to Plant Disease Epidemiology. John Wiley & Sons, New York. 532.

Fuentes, J. L., Fernando, J., Correa, V., Escobar, F., Prado, G., Aricapa, G., Duque, M.C. and Tohme, J. 2008. Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica 160: 295-304.

Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y (2006) Function and characterization of starch synthase I using mutants in rice. Plant Physiol 140 1070–1084

Fujita, N., Yoshida, M., Kondo, T., Saito, K., Utsumi, Y., Tokunaga, T., & Nakamura, Y. (2007). Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant physiology, 144(4), 2009-2023.

Jia, Y, Wang, Z. and Singh, P. 2002. Development of dominant rice blast resistance Pi-ta gene markers. Crop Science 42: 2145-2149.

Khan, G, H., Shikari, A. B., Vaishnava, R., Sofi, N., Padder, B. A., Bhat, Z. A., Parray, G. A., Bhat, G. M., Ram, K. and Singh, N. K. 2018 Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji. Scientific Reports 8: 4091.

Khan, G. H., Shikari, A. B., Wani, S. H., Sofi, N. R. and Parray, G. A. 2016. Mushk budji Aromatic Land Race of Kashmir. J Rice Res 4:1.

Mackil, D. J. and Bonman, J. M. 1992. Inheritance of blast resistance in near isogenic lines of rice. Phytopathology 82: 746-749.

McCouch, S. R., Teytelman, L., Xu, Y., Labos, K. B., Clare, K. and Walton, M. 2002. Development and mapping of 2240 new SSR markers in rice (Oryza sativa L.). DNA Research 9: 199 -207.

Ramkumar, G., Srinivasarao, K., Madhan, M. K., Sudarshan, I., Sivaranjani, A. K. P., Gopalakrishna, K., Neeraja, C. N., Balachandran, S. M., Sundaram, R. M., Prasad, M.S., Shobha, R.N., Rama, P. A. M., Viraktamath, B. C. and Madhav, M.S. 2011. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54 (Pikh). Molecular Breeding 27: 129-135.

SES, IRRI, 1996. Standard Evaluation and Utilization System for Rice. IRRI publisher PO Box 933, Manila, Philippines.

Singh, N., Kumar, P. J., Panda, P., Mandal, P., Kumar, V., Singh, B., Mishra, S., Singh, Y., Singh, R., Rai, V., Gupta, A., Sharma, T. R. and Singh, N. K. 2015. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Scientific Reports 5:11600

Stam, P. and Zeven, A. C. 1981. The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica, 30:227-23

Tanaka, K. I., Ohnishi, S., Kishimoto, N., Kawasaki, T., & Baba, T. (1995). Structure, organization, and chromosomal location of the gene encoding a form of rice soluble starch synthase. Plant physiology, 108(2), 677-683.

Van Berloo, R. (2008). GGT 2.0: versatile software for visualization and analysis of genetic data. Journal of Heredity, 99(2), 232-236.

Zeigler, R. S., Tohme, J., Nelson, R., Levy, M. and Correa, F. 1994. Linking blast population analysis to resistance breeding: A proposed strategy for durable resistance: Rice Blast Disease. (Eds.) Zeigler, R.S., Leong, S. and Teng, P.S. Commonwealth Agricultural Bureaux International, Wallingford, England, 267-292.

Zhang, X., Wang, J., Huang, J., Lan, H., Wang, C., Yin, C., & Zhang, H. (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences, 109(52), 21534-21539.