DNA content, ploidy level determination and genetic variations of okra (Abelmoschus esculentus L.) genotypes

Main Article Content

Naser M. Salameh

Abstract

Okra (Abelmoschus esculentus L.) is a minor small crop in Jordan; it has attracted a lot of attention as a substitute for conventional
vegetables throughout the world. There are conflicting reports about chromosome numbers in this species. To determine the ploidy
level of different okra genotypes, okra root tips were treated with HCl maceration, enzymatic maceration, and Carmine acid squashing.
Treating cells with HCl didn’t macerate the cell in a way that enables chromosome count. The enzymatic treatment combination
showed no significant effect on cell maceration. Carmine’s acetic acid squashing method was able to digest the cells but in a way that
all chromosomes from neighboring cells gathered, making it difficult to count them from each cell. Flow cytometry as an alternative
way to assess okra ploidy, was considered as an option. The genome size of okra ranged from 4.11 pg 2C in genotype 43 to 6.27 pg 2C
in genotype 30.

Article Details

How to Cite
Salameh, N. M. . (2023). DNA content, ploidy level determination and genetic variations of okra (Abelmoschus esculentus L.) genotypes. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 83(04), 567–572. https://doi.org/10.31742/ISGPB.83.4.13
Section
Research Article

References

Bolin, J. F., Hartwig, C. L., Schafran, P., Komarnytsky, S., Carolina, N., & Carolina, N. (2018). Copyright 2018 Southern Appalachian Botanical Society Application of DNA Flow Cytometry to Aid Species Delimitation in Isoetes. 83(1), 38–47. https://doi.org/10.2179/16-120

Chu, Z., Wen, J., Yang, Y., Nie, Z., & Meng, Y. (2018). Genome size variation and evolution in the grape family Vitaceae. 56(4). https://doi.org/10.1111/jse.12310

Huang, C., Wang, C., Lee, Y., & Peng, C. (2017). Active subfractions of Abelmoschus esculentus substantially prevent free fatty acid-induced β cell apoptosis via inhibiting dipeptidyl peptidase-4. 1–17.

Kumari, M., Solankey, S. S., Akhtar, S., & Neha, P. (2017). Assessment of genetic variability and character association in okra genotypes for yield and contributing characters. 9411.

Li, W., Liu, L., Wang, Y., Fan, G., Zhang, S., & Wang, Y. (2020). Scientia Horticulturae Determination of genome size and chromosome ploidy of selected taxa from Prunus armeniaca by fl ow cytometry. 261(November 2019).

Lomonosova, M. N., An, T. V, Voronkova, M. S., Korolyuk, E. A., Banaev, E. V, Skaptsov, M. V, Ломоносова, М. Н., Анькова, Т. В., Воронкова, М. С., Королюк, Е. А., Банаев, Е. В., & Скапцов, М. В. (2020). Ploidy level of the representatives of Chenopodiaceae based on genome size and chromosome numbers Уровень плоидности представителей семейства Chenopodiaceae , выявленный по размеру генома и числам хромосом. 31, 24–31. https://doi.org/10.14258/turczaninowia.23.1.3

Mishra, A., Mishra, H., Senapati, N., & Tripathy, P. (2015). Genetic variability and correlation studies in Okra (Abelmoschus esculentus (L.) Monech). Electronic Journal of Plant Breeding, 6(3), 866–869.

Salameh, N. M. (2014a). Flow cytometric analysis of Nuclear DNA between okra landraces (Abelmoschus esculentus L.). American Journal of Agricultural and Biological Science, 9(2), 245–250. https://doi.org/10.3844/ajabssp.2014.245.250

Salameh, N. M. (2014b). Genetic diversity of okra (Abelmoschus esculentus L.) landraces from different agro-ecological regions revealed by amplified fragment length polymorphism analysis. American Journal of Applied Sciences, 11(7), 1157–1163. https://doi.org/10.3844/ajassp.2014.1157.1163

Wang, Y., Bigelow, C. A., & Jiang, Y. (2009). Ploidy Level and DNA Content of Perennial Ryegrass Germplasm as Determined by Flow Cytometry. 44(7), 2049–2052.

Yan, J., Zhang, J., Sun, K., Chang, D., Bai, S., & Shen, Y. (2016). Ploidy Level and DNA Content of Erianthus arundinaceus as Determined by Flow Cytometry and the Association with Biological Characteristics. 1–15. https://doi.org/10.1371/journal.pone.0151948

Zhang, Q., Chen, W., Sun, L., Zhao, F., Huang, B., Yang, W., Tao, Y., Wang, J., Yuan, Z., Fan, G., Xing, Z., Han, C., Pan, H., Zhong, X., Shi, W., Liang, X., Du, D., Sun, F., Xu, Z., … Zheng, Z. (2012). The genome of Prunus mume. Nature Communications, May, 1–8. https://doi.org/10.1038/ncomms2290