Allelic distribution and association of key gene specific markers with rice yield under acidic soil.

Main Article Content

Magudeeswari P
Shanmugam A
Lokeshkumar K
Jayanta Bora
Wricha Tyagi
Mayank Rai

Abstract

Rice blast disease and soil acidity related phosphorus deficiency and mineral toxicities are the major issue observed in rice growing ecosystems across the world, especially in North Eastern Hill (NEH) region of India. The present study aimed to check the allelic distribution for major genes for blast resistance, low P tolerance, grain yield and their association with increasing grain yield under acidic soils in NEH region. A set of 75 genotypes including parental lines, advanced breeding lines and landraces were evaluated and a significant association of SPIKE allele (Type-5) with spikelets per panicle, grain yield per panicle and plot yield was recorded. Gn1a-InDel3 allele was significantly associated with increased spikelets and grain number per panicle. The gene PSTOL1 showed a significant association with tiller number at 30 and 60 days after transplanting but not with plot yield. The genotypes carrying desirable allele for Pi9, Pi2 and Pi-ta recorded lower disease scores but none of them individually were significantly associated with blast resistance. Genotypes carrying these genes together had significantly lower blast disease scores. The study also identified advanced breeding lines ULRC24-48-5-1, ULRC24-57-1-1-1, ULRC24-49-5-1-1, ULRC24-99-3-1-1, ULRC26-11-2-1-1 and ULRC26-1-1-1 carrying six to eight favourable allelic combinations with high plot yield under acidic soil conditions. These lines can be used as potential donors in breeding pipeline for enhancing genetic gain under low input acidic soil conditions

Article Details

How to Cite
Magudeeswari P, Shanmugam A, Lokeshkumar K, Jayanta Bora, Wricha Tyagi, & Rai, M. (2024). Allelic distribution and association of key gene specific markers with rice yield under acidic soil. INDIAN JOURNAL OF GENETICS AND PLANT BREEDING, 84(03), 354–361. https://doi.org/10.31742/ISGPB.84.3.6
Section
Research Article

References

Abbai R., Singh V. K, Nachimuthu V. V, Sinha P., Selvaraj R., Vipparla A. K., Singh A. K., Singh U. M., Varshney R. K. and Kumar A. 2019. Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor‐made rice with enhanced genetic gains. Plant Biotechnology J., 17(8): 1612-1622.

Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E. R., Qian Q., Kitano H. and Matsuoka, M. 2005. Cytokinin oxidase regulates rice grain production. Sci., 309(5735): 741-745.

Bhandari A., Jayaswal P., Yadav N., Singh R., Singh Y., Singh B., Singh N., Singh S., Sevanthi A., Rai V., Verulkar S., Ramana Rao P. V., Girija Rani M., Anuradha T., Satyanarayana P. V., Krishnamurthi S. L., Sharma P., Singh D., Singh P. K., Nilanjay, Kumar R., Chetia S., Ahmad T., Rai M., Katara J., Marandi B., Swain P., Sarkar R. K., Singh D. P., Reddy J. N., Mandal N., Paramsivam K., Nadarajan S., Thirumeni S., Badri J., Padmavathi G., Ram T. and Singh N. 2019. Genomics- assisted backcross breeding for infusing climate resilience in high- yielding green revolution varieties of rice. Indian J. Genet., 79(1) Suppl: 423 160-170.

Bhutia K. L., Nongbri E. L., Sharma T. O., Rai M. and Tyagi W. 2021. A 1.84-Mb region on rice chromosome 2 carrying SPL4, SPL5 and MLO8 genes is associated with higher yield under phosphorus-deficient acidic soil. J. App. Genet., 62(2): 207-222.

Challam C., Ghosh T., Rai M. and Tyagi W. 2015. Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J. Genet., 94(2): 231-238.

Chin J. H., Gamuyao R., Dalid C., Bustamam M., Prasetiyono J., Moeljopawiro S., Wissuwa M. and Heuer S. 2011. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiology, 156(3): 1202-16.

Chithrameenal K., Alagarasan G., Raveendran M., Robin S., Meena S., Ramanathan A. and Ramalingam J. 2018. Genetic enhancement of phosphorus starvation tolerance through marker assisted introgression of OsPSTOL1 gene in rice genotypes harbouring bacterial blight and blast resistance. PLoS One, 13(9): e0204144.

Chukwu S. C., Rafii M. Y., Ramlee S. I., Ismail S. I., Oladosu Y., Kolapo K., Musa I., Halidu J., Muhammad I. and Ahmed M. 2020. Marker-assisted introgression of multiple resistance genes confers broad spectrum resistance against bacterial leaf blight and blast diseases in Putra-1 rice variety. Agronomy, 10(1): 42.

Dellaporta S. L., Wood J. and Hicks J. B. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep., 1: 19–21.

Dutta S. S., Tyagi W., Pale G., Pohlong J., Aochen C., Pandey A., Pattanayak A. and Rai M. 2018. Marker–trait association for low-light intensity tolerance in rice genotypes from Eastern India. Molecular Genetics and Genomics, 293(6): 1493-1506.

Ellur R. K., Khanna A., Yadav A., Pathania S., Rajashekara H., Singh V. K., Gopala Krishnan S., Bhowmick P. K., Nagarajan M., Vinod K. K., Prakash G., Mondal K. K., Singh N. K., Prabhu K. V. and Singh A. K. 2016. Improvement of basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci., 242: 330–341.

Fujita D., Trijatmiko K. R., Tagle A. G., Sapasap M. V., Koide Y., Sasaki K., Tsakirpaloglou N., Gannaban R. B., Nishimura T., Yanagihara S. and Fukuta Y. 2013. NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars. Proceedings of the National Academy of Sciences, 110(51): 20431-20436.

Gamuyao R., Chin J., Pariasca-Tanaka J., Pesaresi P., Catausan S, et al. 2012. The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488: 535–39.

Hasan M. M., Rafii M. Y., Ismail M. R., Mahmood M., Alam M. A., Abdul Rahim H., Malek M. A. and Latif M. A. 2016. Introgression of blast resistance genes into the elite rice variety MR263 through marker‐assisted backcrossing. Journal of the Science of Food and Agriculture, 96(4): 1297-1305.

Haug A. and Foy C. E. 1984. Molecular aspects of aluminum toxicity. Critical Reviews in Plant Sciences, 1: 345–373.

Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J. and Fu, X. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature genetics, 41(4): 494-497.

IRRI, (2013)- SES (Rice standard evaluation system). https://www.clrri.org/ver2/uploads/SES_5th_edition.pdf.

Ishimaru, K., Hirotsu, N., Madoka, Y., Murakami, N., Hara, N., Onodera, H., Kashiwagi, T., Ujiie, K., Shimizu, B.I., Onishi, A. and Miyagawa, H. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature genetics, 45(6): 707-711.

Ismail A. M., Heuer S., Thomson M. J. and Wissuwa M. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol., 65: 547–570.

Jia Y., Zhou E., Lee S. and Bianco T. 2016. Coevolutionary dynamics of rice blast resistance gene Pi-ta and Magnaporthe oryzae avirulence gene AVR-Pita 1. Phytopathology, 106: 676–683.

Jiang H., Li Z., Liu J., Shen Z., Gao G., Zhang Q. and He Y. 2019. Development and evaluation of improved lines with broad-spectrum resistance to rice blast using nine resistance genes. Rice, 12(1): 1-11.

Jiao Y., Wang Y., Xue D., Wang J., Yan M., Liu G., Dong G., Zeng D., Lu Z., Zhu X., Qian Q. and Li J. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet., 42(6): 541–544.

Khanna A., Sharma V., Ellur R. K., Shikari A. B., Gopala Krishnan S., Singh U. D., Prakash G., Sharma T. R., Rathour R., Variar M. and Prashanthi S. K. 2015b. Development and evaluation of near-isogenic lines for major blast resistance gene (s) in Basmati rice. Theoretical and applied genetics, 128(7): 1243-59.

Khanna A., Sharma V., Ellur R. K., Shikari A. B., Krishnan S. G., Singh U. D., Prakash G., Sharma T. R., Rathour R., Variar M. and Prashanthi S. K. 2015a. Marker assisted pyramiding of major blast resistance genes Pi9 and Pita in the genetic background of an elite Basmati rice variety, Pusa Basmati 1. Indian J. Genet., 75(4): 417-25.

Kim S. R., Ramos J., Ashikari M., Virk P. S., Torres E. A., Nissila E., Hechanova S. L., Mauleon R. and Jena K. K. 2016. Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice, 9(1): 1-17.

Kochian L.V., Hoekenga O. A. and Piñeros M. A. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55: 459–493.

Li W., Lei C., Cheng Z., Jia Y., Huang D., Wang J., Wang J., Zhang X., Su N., Guo X., Zhai H. and Wan J. 2008. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol. Breeding, 22: 141-149.

Li Y., Fan C., Xing Y., Jiang Y., Luo L., Sun L., Shao D., Xu C., Li X., Xiao J. and He Y. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature genetics, 43(12): 1266-1269.

Miura K., Ikeda M., Matsubara A., Song X. J., Ito M., Asano K., Matsuoka M., Kitano H. and Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature genetics, 42(6): 545-549.

Ning X., Yunyu W. and Aihong L. 2020. Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Sci., 27(4): 263-277.

Ning X., Yunyu W. and Aihong L. 2020. Strategy to use rice blast resistance genes in rice Molecular breeding. Rice science, 27(4): 263-277.

Olivoto T. and Col Lúcio A. D. 2020. metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11(6): 783-789.

Ookawa T., Hobo T., Yano M., Murata K., Ando T., Miura H., Asano K., Ochiai Y., Ikeda M., Nishitani R., Ebitani T., Ozaki H., Angeles E. R., Hirasawa T. and Matsuoka M. 2010. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Comms., 1: 132.

Rose T. J. and Wissuwa M. 2012. Rethinking internal phosphorus utilization efficiency: a new approach is needed to improve PUE in grain crops. Adv. Agron., 116: 185-217. https://doi.org/10.1016 /B978-0-12-394277-7.00005-1.

Singh A. K., Singh P. K., Arya M., Singh N. K. and Singh U. S. 2015. Molecular screening of blast resistance genes in rice using SSR markers. The Plant Pathology Journal, 31(1): 12.

Singh H., Deshmukh R. K., Singh A., Singh A. K., Gaikwad K., Sharma T. R., Mohapatra T. and Singh N. K. 2010. Highly variable SSR markers suitable for rice genotyping using agarose gels. Molecular breeding, 25(2): 359-364.

Singh V. K., Singh A., Singh S. P., Ellur R. K., Choudhary V., Sarkel S., Singh D., Krishnan S. G., Nagarajan M., Vinod K. K. and Singh U. D. 2012. Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Research, 128: 8-16.

Suprapta D. N. and Khalimi K. 2012. Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J. Int. Society of Southeast Asian Agril. Sci., 18(2): 1-8.

Swathi G., Durga Rani C. V., Md J., Madhav M. S., Vanisree S., Anuradha C., Kumar N. R., Kumar N., Kumari K. A., Bhogadhi S. C. and Ramprasad E. 2019. Marker-assisted introgression of the major bacterial blight resistance genes, Xa21 and xa13, and blast resistance gene, Pi54, into the popular rice variety, JGL1798. Molecular Breeding, 39(4): 1-2.

Takai T., Adachi S., Fujita D., Arai-Sanoh Y., Okamura M., Kondo M. and Kobayashi N. 2017. Effects of yield-related QTLs SPIKE and GPS in two indica rice genetic backgrounds. Plant Production Science, 20(4): 467-476.

Takai T., Fujita D., Lumanglas P., Simon E. V., Sasaki K., Ishimaru T., Asai H. and Kobayashi N. 2019. SPIKE, a quantitative-trait locus, increases rice grain yield under low-yield conditions. Euphytica, 215(6): 10.

Tanweer F. A., Rafii M. Y., Sijam K., Rahim H. A., Ahmed F., Ashkani S. and Latif M. A. 2015. Introgression of blast resistance genes (putative Pi-b and Pi-kh) into elite rice cultivar MR219 through marker-assisted selection. Frontiers in plant science, 6: 1002.

Thakur S., Singh P. K., Das A., Rathour R., Variar M., Prashanthi S. K., Singh A. K., Singh U. D., Chand D., Singh N. K. and Sharma T. R. 2015. Extensive sequence variation in rice blast resistance gene Pi54 makes it broad spectrum in nature. Front Plant Sci., 6: 345.

Tian D., Chen Z., Chen Z., Zhou Y., Wang Z., Wang F. and Chen S. 2016. Allele-specific marker-based assessment revealed that the rice blast resistance genes Pi2 and Pi9 have not been widely deployed in Chinese indica rice cultivars. Rice, 9(1): 1-1.

Tyagi W. and Rai M. 2017. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance. Protoplasma, 254(2): 725-736.

Tyagi W., Nongbri E. N. and Rai M. 2021. Harnessing Tolerance to Low Phosphorus in Rice: Recent Progress and Future Perspectives. Molecular Breeding for Rice Abiotic Stress Tolerance and Nutritional Quality, 215-233.

Vigueira C. C., Small L. L. and Olsen K. M. 2016. Long-term balancing selection at the phosphorus starvation tolerance 1 (PSTOL1) locus in wild, domesticated and weedy rice (Oryza). BMC Plant Biol., 16: 101.

Wissuwa M. 2005. Combining a modelling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant Soil, 269: 57–68.

Wissuwa M., Kretzschmar T. and Rose T. J. 2016. From promise to application: root traits for enhanced nutrient capture in rice breeding. Journal of Experimental Botany, 67(12): 3605-15.

Wissuwa M., Kretzschmar T. and Rose, T. J. 2016. From promise to application: root traits for enhanced nutrient capture in rice breeding. J. Exp. Bot., 67: 3605–3615.

Wu Y. Y., Xiao N., Yu L., Pan C. H., Li Y. H., Zhang X. X., Liu G. Q., Dai Z. Y., Pan X. B. and Li A. H. 2015. Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS One, 10(6): e0126130.

Yadav M. K., Aravindan S., Ngangkham U., Raghu S., Prabhukarthikeyan S. R., Keerthana U., Marndi B. C., Adak T., Munda S., Deshmukh R. and Pramesh D. 2019. Blast resistance in Indian rice landraces: Genetic dissection by gene specific markers. PLoS One, 14(1): e0211061.

Yang J. Y., Chen S., Zeng L. X., Li Y. L., Chuan-ying Li, and Zhu X. Y. 2008. Race specificity of major rice blast resistance genes to Magnaporthe grisea isolates collected from indica rice in Guangdong, China. Rice Sci., 15: 311–318.

Yumnam J. S., Rai M. and Tyagi W. 2017. Allele mining across two low-P tolerant genes PSTOL1 and PupK20-2 reveals novel haplotypes in rice genotypes adapted to acidic soils. Plant Genetic Resources, 15(3): 221-229.