
Abstract
Crop improvement programs aim to develop high-yielding varieties, coupled with resistance to biotic and abiotic stresses with nutritional 
superiority. Grain yield, being a complex trait is governed by genotypes, environment, and their interaction. Growing of large number 
of genotypes under multiple environments and measuring grain yield and its components are tedious and resource-consuming tasks. 
Therefore, there is a great need for novel, cost-effective techniques to evaluate the performance of crops at the field scale through 
indirect selection of easily scorable traits using sound algorithms based on comprehensive data. Convolutional neural networks (CNN) 
are one of the most promising deep learning methods for dealing with several complex tasks including crop yield prediction, but 
their performance is affected by manually set hyper-parameters. To address this, we proposed the artificial bee colony optimizer to 
efficiently search the hyper-parameters of CNN models for predicting the wheat yield on the basis of normalized difference vegetation 
indices, canopy temperature and plant height. Models are developed on crop yield data using 3350 germplasm of wheat planted in 
two growing environments as well as two different locations during the winter season of 2020-21. When compared to other popular 
optimization algorithms, such as genetic algorithms and particle swarm optimizers, the proposed model is proven to be superior for 
predicting wheat yield in terms of root mean square error (RMSE) (66.44–80.68 g/m2) and R2 (0.88–0.91) and at the same time greatly 
reduced the computational time. In addition, crop yield prediction using the proposed model can support different management 
decisions, including timing and amount of fertilization and selective breeding.
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Introduction
In the realm of modern agriculture, the ability to predict crop 
yield at a field scale stands as a pivotal factor influencing 
farming practices, resource utilization, and food security 
measures. Furthermore, non-destructive prediction of crop 
yield with high accuracy would allow the identification of 
high-yielding genotypes rapidly and efficiently from a large 
number of promising genotypes (Bendig et al. 2015; Elsayed 
et al. 2017). However, predicting crop yield at a field scale is 
challenging due to the intricate interplay of diverse factors 
like weather, soil quality, genetics, and farming practices. 
This complexity arises from the difficulty in capturing 
spatial variations, temporal changes, and unforeseen events, 
compounded by limited data and the need to balance model 
complexity with practicality. Therefore, innovative crop yield 
prediction models are essential to address these challenges.

Remote sensing has found extensive application in 
agriculture with different vegetation indices providing a 
non-destructive, real-time measure of crop growth. The 
normalized difference vegetation index (NDVI), is one of 
the most commonly used vegetation indices based on the 

reflectance of red and near-infrared lights. It can be used 
to characterize crop growth stages, evaluate crop density, 
and predict crop yield (Rutkoski et al. 2016). In crops, such as 
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maize, wheat, sorghum, and barley, scientists have identified 
significant correlations between biomass and NDVI with 
some correlation coefficients above 0.70. The values of NDVI, 
especially 2 to 3 weeks before and after the heading stage, 
are highly correlated with grain yield in wheat (Babar et al. 
2006). The NDVI information contains dense data and has a 
non-linear relationship with the spatial crop yield (Taşan et 
al. 2022). By utilizing NDVI data during the early crop growth 
stage, we can enhance yield estimation for crop forecasting 
and effectively identify high-yielding lines in large breeding 
populations.

Many studies have used machine learning (ML) 
techniques such as regression trees, random forest, 
multivariate regression, support vector machine, and 
artificial neural networks for predicting the crop yield using 
NDVI (Liu et al. 2001; Nuarsa et al. 2011; Sultana et al. 2014). ML 
models treat the output, crop yield, as an implicit function 
of the input variables such as NDVI, weather components 
and soil conditions, which could be a very complex and 
non-linear function. Artificial neural networks have a high 
ability to model nonlinear complex relationships between 
dependent and independent variables (Cui et al. 2018). 
Support vector machines (SVMs) have the potential to solve 
the overfitting problem when using high-dimensional data 
such as spectral data (Chlingaryan et al. 2018). Spectral 
indices have been used in ML methods for yield estimation 
of potatoes (Wolanin et al. 2020), wheat (Pantazi et al. 2016) 
and cotton (Prasad et al. 2006). Marques Ramos et al. (2020) 
used five different ML methods with the vegetation indices 
to estimate maize yield. The random forest model estimated 
maize yield more accurately than other models. However, 
few studies have been conducted using the vegetation 
indices with ML methods to estimate vegetable yield (Wei 
et al. 2020).

More recently, a deep learning (DL) framework that 
takes advantage of state-of-the-art modeling and solution 
techniques is used to predict crop yield based on spectral 
vegetation indices, environmental data, and management 
practices. The convolutional neural network (CNN) model 
is one of the most important DL models for predicting crop 
yield (Khaki et al. 2020). You et al. (2017) applied CNNs and 
recurrent neural networks (RNNs) to predict soybean yield 
based on a sequence of remotely sensed images. Kim et al. 
(2019) developed a deep neural network model for crop yield 
prediction using optimized input variables from satellite 
products and meteorological datasets between 2006 and 
2015. Wang et al. (2018) designed a DL framework to predict 
soybean crop yields in Argentina and they also achieved 
satisfactory results with a transfer learning approach to 
predict soybean harvests with a smaller amount of data in 
Brazil. Yang et al. (2019) investigated the ability of CNN to 
estimate rice grain yield using remotely sensed images and 
found that the CNN model provided a robust yield forecast 

throughout the ripening stage. Khaki et al. (2019) used deep 
CNNs to predict corn yield loss across 1,560 locations in the 
United States and Canada. Due to its great learning and 
expression ability, more and more CNN models have been 
studied and proposed in recent years.

However, one obstacle encountered when implementing 
CNNs is configuring the architecture of the CNN model. 
Therefore, how to design an efficient network configuration 
for CNN is challenging yet tough work. For example, 
how many convolution kernels should be used in the 
convolutions layer and how large should the kernel be? 
What kind of activation function is better? And how to set 
the learning rate to make the CNN learn better? These are 
determined by the hyper-parameters setting of the neural 
network. At present, most CNNs usually adopt a fixed CNN 
structure and then set the hyper-parameters based on the 
historical experiences of network designers (He et al. 2016; 
Huang et al. 2017). Network designers manually adjust hyper-
parameters through trial-and-error experiments, requiring 
time and effort to obtain the final model architecture. These 
procedures, based on historical experience and personal 
preferences, often result in locally optimal models, that 
are far from globally best hyper-parameter configurations. 
Therefore, to obtain better CNN architecture, a more efficient 
way is to regard finding the best CNN hyper-parameters 
as an optimization problem and then employ powerful 
algorithms to solve the optimization problem. However, 
hyper-parameters are interconnected and have different 
variable types e.g., integer, real-number, or discrete, making 
them a black box problem with no explicit objective 
function presentation. As a result, traditional optimization 
methods, such as Newton’s iterative method and conjugate 
gradient method, struggle to solve the high complexity CNN 
hyperparameters optimization problem.

Instead of traditional methods, evolutionary computation 
(EC) intelligent algorithms, such as genetic algorithm 
(GA) and particle swarm optimization (PSO), have shown 
promising search ability in finding optimal solutions 
for complex problems. These algorithms have become 
increasingly important in recent years for optimizing 
network hyper-parameters of CNNs, as they avoid difficulties 
in manual designs and allow for the automatic generation of 
promising CNN models. However, EC algorithms are based 
on population search and iterative evolution, which requires 
further speeding up to reduce long running time. The 
fitness evaluation of solutions in EC algorithms consumes 
significant computational time, making the optimization 
process often lengthy.GA is better suited for optimizing 
large and complex parametric spaces, but currently available 
implementations of genetic algorithms are only for discrete 
search space (Bellot et al. 2018). On the other side, PSO 
algorithm enables parallelization and fast convergence 
but needs proper initialization and might stuck in the local 
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optimum (Zahedi et al. 2021). 
This study proposes to adapt the artificial bee colony 

(ABC), a population-based evolutionary heuristic algorithm, 
for optimizing CNN hyper-parameters in order to overcome 
the challenges of traditional EC algorithms. Specifically, 
the study evaluates the performance of the ABC-optimized 
CNN model using key indicators such as Normalized 
Difference Vegetation Index (NDVI), canopy temperature 
(CT), and plant height for wheat yield prediction across 
different environmental conditions. Besides, the study 
aims to compare the ABC-optimized CNN model with CNN 
models optimized using genetic algorithm (GA) and particle 
swarm optimization (PSO) in terms of prediction accuracy, 
optimization speed, and reliability.

Materials and methods

Data collection 
This study used real-world data to predict the performance 
of a diverse set of wheat germplasm under different 
locations as well as environments. Approximately 3350 
wheat accessions were grown in an augmented block 
design (ABD) during the winter season 2020-2021 under 
two environments i.e., irrigated and rainfed at ICAR-National 
Bureau of Plant Genetic Resources, Issapur Farm, New 
Delhi and at Agharkar Research Institute, Pune. The traits 
measured included grain yield (GY, g/m2), plant height (PH, 
cm), canopy temperature (CT, ℃), and normalized difference 
vegetation indices (NDVI). Plant height was measured as the 
length from ground level to the apex of the spike excluding 
awns. Canopy temperature (CT) and NDVI data were 
collected during the growing seasons at different growth 
stages from tillering through senescence (ground cover, 
heading, anthesis, grain filling and maturity)(Zadoks et al. 
1974) using a handheld infrared thermometer(IRT) (Fisher 
Scientific, UK) and Green Seeker (Trimble Navigation Limited, 
Sunnyvale, CA, USA) respectively (Table 1). The observations 
were recorded as three readings per plot during the mid-day 
from 11 a.m. to 2 p.m. corresponding to solar noon on each 
day of observation. The cloudy day was avoided so that 
plant canopy could get a maximum light interception. The 
IRT readings were taken at a 30º angle from the horizon for 
measurement and NDVI readings were taken at a distance 
of 70 cm above the crop canopy (Pask, 2012). 

Data preprocessing
The NDVI observations had 6.7% missing values for some 
germplasms, which we imputed using the mean of the 
same NDVI data of other germplasms. The CT data had 6.3% 
missing values for some germplasms, which we imputed 
using the mean of the same CT data of other germplasms 
at the same location as well as the environment. The plant 
height did not have any missing values. We tried other 
imputation techniques such as median and most frequent 

and found that the mean approach led to the most accurate 
results. Table 2 shows the summary statistics of the field-
measured parameters. Mean wheat yield data for irrigated 
and rainfed environments in Delhi and Pune locations is 
288.17 g/m2 and the maximum wheat yield is 1182 g/m2. 
The result reveals a robust correlation between wheat 
yield and NDVI, particularly at the heading stage, with a 
correlation coefficient of 0.98. This indicates an exceptionally 
strong positive relationship between these variables. The 
high NDVI during the heading stage appears closely tied 
to increased wheat yield, underlining the significance of 
vegetation health at this growth phase. In this dataset, each 
and every attribute has its own measurement. In order to 
obtain accurate prediction, the dataset has been rescaled 
using Eq. (1).

   (1)

Where X′ is the rescaled value, X is the attributes value, 
min(X) is the minimum of the attributes value and max (X) 
is the maximum of the attributes value.

Convolutional neural networks
Convolutional neural networks (CNNs) are proposed 
to accommodate situations where input variables are 
distributed along a space pattern, such as one-dimension 
(Fig. 1) (e.g., NDVIs or text), and two or three-dimensions 
(e.g., images). CNNs are a special case of neural networks 
that uses convolution instead of a full matrix multiplication 
in the hidden layers (Pérez-Enciso and Zingaretti 2019). A 
typical CNN is made up of dense, fully connected layers and 
“convolutional layers”.

In each convolutional layer, a convolutional operation is 
performed along the input of predefined width and strides. 

Table 1. Description of the dataset

Variables Item Description

Yield Irrigated wheat yield (g/m2)
Rainfed wheat yield (g/m2)

Grain yield per plot 
after harvesting, 
threshing and 
cleaning.

NDVI Normalized Difference 
Vegetation Indices (NDVI) at 
five growth stages

NDVI data were 
collected during 
ground cover, 
heading, anthesis, 
grain filling and 
maturity stage.

CT Canopy Temperature (CT) at 
four growth stages (℃)

CT data were 
collected during 
the heading, 
anthesis, grain 
filling and maturity 
stages.

PH Plant Height(cm) Measured in cm
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Each of these convolutional operations is called a “kernel” 
or a “filter” and is somewhat equivalent to a “neuron” in a 
multi-layer perceptron. An activation function is applied 
after each convolution to produce the output. Finally, an 
operation called “pooling” is usually applied to smooth 
out the result. It consists of merging the kernel outputs of 
different successive positions by taking the mean, maximum, 
or minimum of all values of those positions. One of the main 
advantages of convolutional networks is their capability to 
reduce the number of parameters to be estimated. These 
networks also have sparse interactions and are equivariant 
to translations.

In this study, the deep neural network model of CNN 
is used for predicting wheat yield based on NDVI, CT and 
plant height. It is shown in Figure 1. The input layers of this 
model are NDVI, CT and PH for five growing stages of wheat. 
Four convolutional layers and one max-pooling layer are set 
based on expert knowledge and other hyper-parameters are 
set according to the results of ABC optimization algorithm 
in Section 3. To prevent overfitting of the training data a 
dropout layer is added to the network architecture. All input 
data need to be normalized before being fed into the model 
and, finally, back normalized for output. The ratio of training 
data to test data is set to 8:2, where 80% is training data and 
20% is test data.

Artificial bee colony optimization of CNN hyper-
parameters
The process of building CNN network models involves the 
determination of many hyper-parameters, such as network 
depth, learning rate, batch size, and so on. The most 
intuitive way is to find the optimal parameters by manual 
trial and error, but the manual trial and error method is 
too inefficient. It lacks a certain exploration process, and 
the parameters can only be adjusted manually repeatedly 

Table 2. Summary statistics of the dataset and correlation coefficient (r) with yield

Mean Minimum Maximum Standard deviation r

NDVI_Ground cover 0.34 0.08 0.42 0.12 0.828

NDVI_Heading 0.54 0.19 0.72 0.09 0.980

NDVI_Anthesis 0.61 0.39 0.93 0.08 0.950

NDVI_Grain filling 0.75 0.29 0.80 0.09 0.866

NDVI_Maturity 0.41 0.17 0.65 0.12 0.727

CT_HeadingºC 21.12 15.4 36.34 2.51 0.566

CT_AnthesisºC 22.45 18 38.56 1.84 0.520

CT_Grain fillingºC 25.56 18.2 39.67 2.39 0.444

CT_MaturityºC 31.67 19.1 39.56 1.77 0.214

Plant height (cm) 98 55 168 21.20 0.190

Grain yield (g/m2) 288.17 15.5 1182 115.25 1.000

Summary statistics is average of all four datasets under different environment and locations

Fig. 1. 1D convolutional neural network for crop yield prediction

for different problems and data. It takes a lot of time, and 
the final combination of model hyper-parameters may not 
be optimal, which will affect the prediction of the model, 
including the degree of network fit and the generalization 
ability to the test set. Artificial bee colony (ABC) is an 
optimization algorithm based on honeybees’ foraging 
behavior. Introduced by Dervis Karaboga in 2005, ABC 
iteratively explores solution spaces, balancing exploration, 
and exploitation. It’s applicable in optimization problems 
like function optimization and hyper-parameter tuning in 
ML due to its simplicity and effectiveness in finding global 
optimal solutions. The main optimized hyper-parameters 
and the range of values are shown in Table 3.

The number of filters (Depth) defines the depth or 
number of channels in each convolutional layer. More filters 
enable the network to learn diverse and hierarchical features, 
enhancing its representational capacity but increasing 
computational cost. Filter size (Kernel Size) determines the 
receptive field size of filters. Larger filters capture broader 
features, while smaller filters focus on finer details. It directly 
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affects the network’s ability to detect different levels of 
features in the input data. Epoch indicates the number 
of iterations of the data set during model training. If the 
number of iterations is set too large, the training time of the 
model is longer, resulting in overfitting of the model, over-
reliance on training data, and poor prediction of unknown 
data, which makes the generalization ability of the model 
lower. If the number of iterations is set too small, it will make 
the model fit poorly and affect the prediction accuracy of 
the model. The size of the mini-batch to use for each training 
iteration is indicated, specified as the comma-separated pair 
consisting of ‘Minibatch Size’ and a positive integer. A mini-
batch is a subset of the training set that is used to evaluate 
the gradient of the loss function and update the weights. If 
the number of iterations is set too large, the training time of 
the model is long, causing the model to be overfitted and 
overly dependent on the training data. The prediction ability 
of the unknown data is poor, thus making the generalization 
ability of the model lower. If the number of iterations is set 
too small, it will make the model not fit well and affect the 
prediction accuracy of the model.

The initial learning rate, α, is a relatively important 
hyperparameter in the CNN model. When the learning rate 
is too large, it will cause the parameters to be optimized 
to fluctuate around the minimum value, thus skipping the 
optimal solution. When the learning rate is set too small, it 
will affect the convergence speed of the model, resulting in a 
slow convergence rate. In this paper, α is set to 0.01 based on 
the empirical value. Dropout means that, during the training 
process of the model, the network units, are temporarily 
dropped from the network according to a certain probability. 
This hyperparameter plays a crucial role in preventing model 
overfitting and improving the generalization ability of the 
model. The key hyperparameters searched in this paper are 
data batch size, number of iterations, discard factor, and 
number of filters in the convolutional layer. The remaining 
hyperparameters are based on experience, the optimizer is 
selected as “adam”, Learn rate schedule is set to “piecewise”, 
and the root mean square error is selected as the target loss 
function.

The optimization of the CNN model hyperparameters 
using the artificial bee colony algorithm is an eight-step 
process as follows (Fig. 3, the implementation of the whole 
process is done in Python):

Step 1: The input data is normalized before being 
fed into the model, and then the dataset is divided into 
training, validation, and testing sets, where the training 
set is used to train the CNN model and optimize its 
parameters, the validation set is used to evaluate and fine-
tune hyperparameters during optimization, and the testing 
set is reserved for the final stage to assess the model’s 
generalization performance on unseen data.

Step 2: The CNN hyperparameters to be optimized and 
the range are set; a random set of initialized hyperparameters 

as the initial hyperparameters of the CNN model are 
generated. The training set is input for the training of the 
CNN. The RMSE is used as the objective function for the 
hyperparameters optimization of the CNN model.

Step 3: Employed bees explore the neighborhood of 
their current solutions by modifying hyperparameters. 
It generates a new solution by slightly adjusting one or 
more hyperparameters while ensuring they remain within 
predefined bounds.

Step 4: Onlooker bees evaluate solutions based on 
their RMSE values on the validation set. Bees with lower 
RMSE attract more onlooker bees, who then explore similar 
regions of the search space.

Step 5: Scout Bees Phase introduces randomness 
by replacing solutions that have not improved for a 
certain number of iterations. It explores entirely new 
hyperparameter configurations.

Step 6: Repeat the employed, onlooker, and scout bee 
phases for multiple iterations. Allow the algorithm to explore 
and exploit the search space, aiming to converge towards 
optimal or near-optimal hyperparameters.

Step 7: The maximum number of iterations (40) is 
completed and the minimum objective function and the 
corresponding trained CNN model hyper-parameters are 
returned.

Step 8: The testing set, which has remained unseen 
during training and validation, is now fed into the final 
trained model to construct a CNN wheat yield prediction 
model based on the ABC algorithm.

The general framework of this study is shown in Figure 3. 
Based on the indicators required for wheat yield calculation, 
the influence of different input variables on wheat yield 
prediction was analyzed on the ABC-CNN model. Then the 
performance of other popular optimization algorithms i.e., 
GA and PSO optimized CNN for wheat yield prediction was 
compared; finally, the robustness of ABC-CNN is explored. 
All models used were run in a Python environment.

Model performance evaluation
In this study, the coefficient of determination , root 

Table 3. CNN parameter setting and range

Hyperparameters Parameter space (CNN) Encoding type

Number of filters [2–128] Integer

Filter size [2–20] Integer

Pooling MaxPooling 1D

Dropout rate [0.1–0.7] Continuous

Epochs [100–800] Integer

MiniBatch size [8–20] Integer

Learning rate 0.01

Objective function RMSE
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mean square error (RMSE), and mean absolute percentage 
error (MAPE) were used as indicators to assess the model 
performance. The equations are written as follows:

Where,  is the number of samples, and  and  are the 
measured and predicted values of winter wheat yield, 
respectively.  is a measure of the strength of the linear 
relationship between the predicted and measured values 
of the model, with larger  indicating that the measured 
and predicted values have similar trends. RMSE is used to 
assess the deviation between measured and predicted 
values. MAPE measures error as a percentage of actual values 
that deviate from predicted ones. The smaller the value, 
the smaller the deviation is between the measured and 
predicted values of the model; the higher , the smaller 
RMSE and MAPE values are and the better the model.

Results and discussion
The proposed model is implemented in Python using the 
TensorFlow open-source software library. For comparative 
analysis, we also implemented genetic algorithm (GA) 
and particle swarm optimization (PSO) as benchmark 
optimization methods. In the Artificial Bee Colony (ABC) 
algorithm, the number of employed bees and onlooker bees 
is set to 10 each, and the number of iterations is fixed at 40. 
For the genetic algorithm (GA), the population size (NP) is 
set to 10, the maximum number of generations (Gmax) is 
10, the crossover probability (CR) is 0.3, and the mutation 

rate (MR) is 0.15. For the particle swarm optimization 
(PSO) algorithm, the number of particles is set to 10, with 
parameter values defined as c₁ = 2, c₂ = 2, and inertia weight 
(ω) = 0.7, while the number of iterations is 10. The number 
of function evaluations in the ABC algorithm is twice per 
iteration (once in the employed bee phase and once in the 
onlooker bee phase). However, in the standard GA and PSO 
implementations, function evaluations occur only once per 
iteration. To ensure a fair comparison, we modified the GA 
and PSO algorithms to perform two function evaluations 
per iteration, aligning them with the ABC method.

Table 4 compares the performance of the three models 
on the basis of time efficiency, “time” and the accuracy, 
RMSE, of the model after tuning the hyperparameters. These 
results suggest that our proposed approach outperformed 
the other models to varying extents. The weak performance 
of PSO is mainly due to its susceptibility to local optima 
trapping within complex and high-dimensional search 
spaces, hindering adequate exploration. GA outperformed 
PSO since it has the ability to explore diverse solutions 
within complex search space, leveraging mechanisms like 
crossover and mutation to introduce variations among 
solutions. ABC outperformed the other two with minimum 
RMSE (68.87 g/plot) and maximum R2 (0.91). ABC showcases 
efficiency in tuning hyperparameters due to its simple 
implementation, and effective balance between exploring 
diverse hyperparameter configurations and exploiting 
promising ones. Its ability to navigate the hyperparameters 
space efficiently and robustly avoids local optima, making it 
a versatile choice across different models and architectures. 
The hyperparameters optimization was performed for all 
three models across four datasets, and the best combination 
was selected for training. The optimized hyperparameters 
for the Delhi irrigated dataset are illustrated in Table 4.

The best estimates of wheat yield obtained from different 
optimized CNN models are compared with corresponding 
observed values using scatterplots (Fig. 4). As expected 
from the comparable R2 and RMSE values, the distribution 
pattern of predicted versus the observed grain yield of 
different optimization method is very similar. Furthermore, 
the amount of overfitting for wheat yield prediction using 
ABC-CNN is much less compared to other optimization 
methods. Figure 4, suggests that the proposed model is 
more effective in utilizing information and less prone to 
local optima. We plotted the probability density functions 
of the ground truth yield and the predicted yield by the 
ABC-CNN model to see if the proposed model can preserve 
the distributional properties of the ground truth yield. As 
shown in Fig. 5, the ABC-CNN model can approximately 
preserve the distributional properties of the ground truth 
yield. However, the variance of the predicted yield is less 
than the variance of the ground truth yield, which indicates 
the ABC-CNN model’s prediction is more centralized around 
the mean.

 

NDVI CT Plant height 

Min max normalization 

Wheat yield records ABC-CNN 

Model evaluation based on RMSE, R2, MAPE 

Comparison with other 
GA and PSO - CNN 

Start ABC 

Initialize hyperparameters 

Initialize population 

Employed bee phase 

Onlooker bee phase 

Scout bee phase 

Satisfy no of iteration 

Minimum objective function 

Optimal hyperparameter combinations 

no 
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no 

Fig. 3. A research framework of the ABC-CNN model for wheat yield 
prediction
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Table 4. Results of optimized CNN hyperparameters on the Delhi 
irrigated dataset

Model ABC-CNN GA-CNN PSO-CNN

Number of filters 7 9 12

Filter size 2 3 2

Epochs 350 150 410

Minibatch 15 13 9

Tim/min 867 1001 1098

RMSE (g/plot) 68.87 88.97 91.47

R2 0.91 0.86 0.77

MAPE (%) 121.78 143.87 167.43

Fig. 4. Scatterplots of the observed yield and predicted yield

Generalization power of ABC-CNN model
To examine the power of the model, we trained the ABC 
– CNN model on four different datasets which includes 
grain yield data using 3350 germplasm of wheat planted 
in two growing environments (irrigated and rainfed) as 
well as two different locations (Delhi and Pune). Table 5 
shows the performance of the proposed model for wheat 
yield predictions at different environments. As shown in 
Table 5, the prediction accuracy of the ABC-CNN model 
emphasizes the significance of achieving consistent and 
high performance across untested datasets. A model’s 
consistent performance across diverse datasets indicates 
its robustness against data variations, noises, and biases. 
It demonstrates effective generalization, adaptability, and 
accuracy in real-world scenarios, reducing concerns about 
overfitting and ensuring reliability with new, unseen data. 
Fig. 6 represents a comparison of R² and RMSE values for 
different plant traits (NDVI, CT and Plant Height) on the Delhi 
irrigated dataset. NDVI exhibits the highest , followed by 
CT, and plant height, suggesting that the predictive model 
performs best for NDVI and least effectively for plant height. 
A lower RMSE corresponds to better model accuracy. While 
NDVI and CT have moderate RMSE values, Plant height 
exhibits the highest, indicating substantial prediction 
error. The results highlight that the model performs well 
for NDVI and CT, whereas the prediction of plant height 
remains a challenge, requiring further model optimization 
or additional explanatory variables.

Important comparison between input variables
To compare the importance of NDVI, CT and plant height 
individually in the yield prediction, we employed the 
ABC-CNN model to capture the linear and nonlinear effects 
of individual components. Fig. 6 shows the yield prediction 
performance of the ABC-CNN model with three different 
input variables. We found that yield estimates using NDVI 
(R2 = 0.77, RMSE = 75.67 g/m2) alone are more accurate than 
those using CT (R2 = 0.56, RMSE = 98.06 g/m2) alone. Because 
NDVI helps track the density and health of the developing 
plants, ensuring they progress uniformly and detecting 
stress factors that might hinder growth or yield potential 
(Nuarsa et al. 2011).

This study proposed the ABC-CNN model for wheat yield 
prediction using NDVI, CT, and plant height, outperforming 

Table 5. Performance of ABC-CNN model on different validation 
dataset

Datasets RMSE R2 MAPE

Delhi irrigated 68.87 0.91 121.78

Delhi rainfed 69.76 0.89 128.71

Pune irrigated 70.23 0.87 136.98

Pune rainfed 68.90 0.88 130.05
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Fig. 5. Probability density function of observed grain yield and 
predicted yieldby ABC-CNN model

 
NDVI CT Plant height 

Fig. 6. Yield prediction performance of ABC-CNN for individual input 
variable of Delhi irrigated dataset

GA-CNN and PSO-CNN in accuracy. NDVI had the most 
significant impact on yield prediction, making it a crucial 
trait for large-scale phenotyping. Future work will explore 
parameter sensitivity and develop a package or web 
interface for ABC-optimized CNN in crop yield prediction.

Authors’ contribution 
Conceptualization of research (ML, GKJ); Designing of the 
experiments (ML, GKJ, RP); Contribution of experimental 
materials (JK, ML); Execution of field/lab experiments 

and data collection (JK, KJYK, ML); Analysis of data and 
interpretation (ML, GKJ, AL, AP); Preparation of the 
manuscript (ML, GKJ, AP). 

Acknowledgments
The first author acknowledges the Post-Graduate School, 
ICAR-Indian Agricultural Research Institute, New Delhi 
for providing the necessary facilities for carrying out this 
research.  The paper uses data generated under ICAR-
NBPGR-DBT Network Project.

References
Babar M. A., Reynolds M. P., van Ginkel M., Klatt A. R., Raun W. 

R. and Stone M. L. 2006. Spectral Reflectance Indices as a 
Potential Indirect Selection Criteria for Wheat Yield under 
Irrigation. Crop Sci., 46(2): 578–588. https://doi.org/10.2135/
cropsci2005.0059

Bellot P., de los Campos G. and Pérez-Enciso M. 2018. Can Deep 
Learning Improve Genomic Prediction of Complex Human 
Traits? Genet., 210(3): 809–819. https://doi.org/10.1534/
genetics.118.301298

Bendig J., Yu K., Aasen H., Bolten A., Bennertz S., Broscheit J., 
Gnyp M. L. and Bareth G. 2015. Combining UAV-based plant 
height from crop surface models, visible, and near infrared 
vegetation indices for biomass monitoring in barley. Int, J. 
Appl. Earth Obs. Geoinf., 93: 79–87. https://doi.org/10.1016/j.
jag.2015.02.012

Chlingaryan A., Sukkarieh S. and Whelan B. 2018. Machine 
learning approaches for crop yield prediction and nitrogen 
status estimation in precision agriculture: A review. 
ComputElectronAgric., 151: 61–69. https://doi.org/10.1016/j.
compag.2018.05.012

Cui Z., Zhang H., Chen X., Zhang C., Ma W., Huang C., Zhang W., Mi 
G., Miao Y., Li X., Gao Q., Yang J., Wang Z., Ye Y., Guo S., Lu J., 
Huang J., Lv S., Sun Y. and Dou Z. 2018. Pursuing sustainable 
productivity with millions of smallholder farmers. Nat., 
555(7696): 363–366. https://doi.org/10.1038/nature25785

Elsayed S., Elhoweity M., Ibrahim H. H., Dewir Y. H., Migdadi H. 
M. and Schmidhalter U. 2017. Thermal imaging and passive 
reflectance sensing to estimate the water status and grain 
yield of wheat under different irrigation regimes. Agric. 
Water Manag., 189: 98–110. https://doi.org/10.1016/j.
agwat.2017.05.001

He K., Zhang X., Ren S. and Sun J. 2016. Deep Residual Learning 
for Image Recognition. IEEE conf. CVPR, 770–778. https://doi.
org/10.1109/CVPR.2016.90

Huang G., Liu Z., Van Der Maaten L. and Weinberger K. Q. 2017. 
Densely Connected Convolutional Networks. IEEE conf. 
CVPR, 2261–2269. https://doi.org/10.1109/CVPR.2017.243

Liu J., Goering C. E. and Tian L. 2001. A neural network for 
setting target corn yields. TransASAE., 44(3). https://doi.
org/10.13031/2013.6097

Khaki S., Khalilzadeh Z. and Wang L. 2019. Classification of Crop 
Tolerance to Heat and Drought-A Deep Convolutional 
Neural Networks Approach. Agron., 9(12): 833. https://doi.
org/10.3390/agronomy9120833

Khaki S., Wang L. and Archontoulis S. V. 2020. A CNN-RNN 
Framework for Crop Yield Prediction. Front. Plant Sci., 10: 
1–14. https://doi.org/10.3389/fpls.2019.01750



86 M. Lokeshwari et al. [Vol. 85, No. 1 

Kim N., Ha K.J., Park N.W., Cho J., Hong S. and Lee Y.W. 2019. A 
Comparison Between Major Artificial Intelligence Models for 
Crop Yield Prediction: Case Study of the Midwestern United 
States, 2006–2015. ISPRS Int. J. Geoinf., 8(5): 240. https://doi.
org/10.3390/ijgi8050240

Marques Ramos A. P., Prado Osco L., Elis Garcia Furuya D., Nunes 
Gonçalves W., Cordeiro Santana D., Pereira Ribeiro Teodoro 
L., Antonio da Silva Junior C., Fernando Capristo-Silva G., 
Li J., Henrique Rojo Baio F., Marcato Junior J., Eduardo 
Teodoro P. and Pistori H. 2020. A random forest ranking 
approach to predict yield in maize with uav-based vegetation 
spectral indices. Comput Electron Agric., 178: https://doi.
org/10.1016/j.compag.2020.105791

Nuarsa I. W., Nishio F., Nishio F., Hongo C. and Hongo C. 2011. 
Relationship between Rice Spectral and Rice Yield Using 
Modis Data. J. Agric. Sci., 3(2): https://doi.org/10.5539/jas.
v3n2p80

Pantazi X. E., Moshou D., Alexandridis T., Whetton R. L. and Mouazen 
A. M. 2016. Wheat yield prediction using machine learning 
and advanced sensing techniques. Comput.Electron. Agric., 
121: 57–65. https://doi.org/10.1016/j.compag.2015.11.018

Pask A. 2012. Physiological breeding. II, A field guide to wheat 
phenotyping.

Pérez-Enciso and Zingaretti. 2019. A Guide for Using Deep Learning 
for Complex Trait Genomic Prediction. Genes, 10(7): 553. 
https://doi.org/10.3390/genes10070553

Prasad A. K., Chai L., Singh R. P. and Kafatos M. 2006. Crop yield 
estimation model for Iowa using remote sensing and surface 
parameters. Int. J. Appl. Earth Obs. Geoinf., 8(1): 26–33. 
https://doi.org/10.1016/j.jag.2005.06.002

Rutkoski J., Poland J., Mondal S., Autrique E., Pérez L. G., Crossa J., 
Reynolds M. and Singh R. 2016. Canopy Temperature and 
Vegetation Indices from High-Throughput Phenotyping 
Improve Accuracy of Pedigree and Genomic Selection for 
Grain Yield in Wheat. G3 Genes|Genomes|Genetics, 6(9): 
2799–2808. https://doi.org/10.1534/g3.116.032888

Sultana S. R., Ali A., Ahmad A., Mubeen M., Zia-Ul-Haq M., Ahmad 
S., Ercisli S. and Jaafar H. Z. E. 2014. Normalized Difference 
Vegetation Index as a Tool for Wheat Yield Estimation: A Case 
Study from Faisalabad, Pakistan. Sci. World J., 1–8. https://doi.
org/10.1155/2014/725326

Taşan S., Cemek B., Taşan M. and Cantürk A. 2022. Estimation 
of eggplant yield with machine learning methods using 
spectral vegetation indices Comput. Electron Agric., 202: 
107367. https://doi.org/10.1016/J.COMPAG.2022.107367

Wang A. X., Tran C., Desai N., Lobell D. and Ermon S. 2018. Deep 
Transfer Learning for Crop Yield Prediction with Remote 
Sensing Data. Proc. Conf. Comput. Sustain. Soc., 1–5. https://
doi.org/10.1145/3209811.3212707

Wei, M. C. F., Maldaner, L. F., Ottoni, P. M. N., and Molin, J. P. 2020. 
Carrot Yield Mapping: A Precision Agriculture Approach 
Based on Machine Learning. Artif Intell., 1(2): 229–241. https://
doi.org/10.3390/ai1020015

Wolanin A., Mateo-García G., Camps-Valls G., Gómez-Chova L., 
Meroni M., Duveiller G., Liangzhi Y. and Guanter L. 2020. 
Estimating and understanding crop yields with explainable 
deep learning in the Indian Wheat Belt. Environ. Res. Lett., 
15(2): 024019. https://doi.org/10.1088/1748-9326/ab68ac

Yang Q., Shi L., Han J., Zha Y. and Zhu P. 2019. Deep convolutional 
neural networks for rice grain yield estimation at the ripening 
stage using UAV-based remotely sensed images. Field Crops 
Res., 235: 142–153. https://doi.org/10.1016/j.fcr.2019.02.022

You, J., Li, X., Low, M., Lobell, D., and Ermon, S. 2017. Deep Gaussian 
Process for Crop Yield Prediction Based on Remote Sensing 
Data. AAAI ConfArtif Intell., 30(1).

Zadoks J. C., Chang T. T. and Konzak C. F. 1974. A decimal code 
for the growth stages of cereals. Weed Res., 14(6): 415–421. 
https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Zahedi L., Mohammadi F. G. and Amini M. H. 2021. HyP-ABC: A 
Novel Automated Hyper-Parameter Tuning Algorithm Using 
Evolutionary Optimization. JIEEE Trans Artif Intell.http://arxiv.
org/abs/2109.05319.


