
Abstract
Genomic selection (GS) emerged as an efficient and cost-effective breeding technique that selects individuals based on their genetic 
merit via the prediction of genomic estimated breeding values (GEBVs) using molecular markers distributed over the entire genome. 
Genomic selection index (GSI) is a linear combination of GEBVs, while the phenotypic selection index (PSI) is a linear combination of 
multiple observable phenotypic traits. In this study, we compared the predictive performance of five parametric GS models such as 
RR-BLUP, Bayesian LASSO, Bayes A, Bayes B, and Bayes C for estimating GSI. Further, the GSI and PSI efficiency of breeding candidates was 
evaluated by applying suitable evaluation measures such as correlations of each indices with the net genetic merit, selection response, 
and expected genetic gain per trait. The findings of this study were further validated by two real datasets, suggesting that the GSI was 
more efficient than the PSI per unit of time.
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Introduction
The conventional breeding approach for the genetic 
improvement of plants and animals using economically 
important quantitative traits solely relies upon phenotypic 
characters and available pedigrees. The advancement 
in molecular genetic techniques led to the availability of 
genome-wide high-density markers and high throughput 
genotyping techniques, which have made it possible to 
predict the breeding value of individuals through marker-
assisted selection (MAS) more efficiently and accurately. 
MAS is an indirect selection approach of a trait of interest 
using marker information and integrating with phenotypic 
information (Fernando and Grossman 1989). However, MAS 
is considered as effective and more efficient only for the 
traits associated with one or a few major genes with large 
effect (Bernardo 2008). MAS has limitations of long selection 
cycles and is less effective for polygenic traits (i.e. traits 
govern by a few hundred to thousands of genes) (Heffner 
et al. 2009; Goddard and Hayes 2007; Xu et al. 2012). 

To overcome the limitations of MAS, Meuwissen et al. 
(2001) proposed Genomic Selection (GS), where whole 
genome marker information is used to estimate the 
genetic merit of individuals. GS is a promising tool for 
improving the genetic gain of individuals for plant and 
animal breeding research in the current scenario. A typical 
GS process starts with forming a training population 
consisting of both genotypic (marker data) and phenotypic 

information (a trait of interest); this information is further 
used to build the statistical model and estimate the marker 
effects accordingly. Further, the estimate of the marker 
effects utilized to obtain genomic estimated breeding 
values (GEBVs), for the individuals in the testing/breeding 
population (i.e., for which only genotypic information is 
available) (Heffner et al. 2009).

Current single-trait (univariate) GS (STGS) models do not 
perform well in scenarios like pleiotropy, missing data, and 
a trait with low heritability (Jia and Jannink 2012; Budhlakoti 
et al. 2019). To solve all these constraints, the multi-trait 
GS(MTGS) models are used to estimate the GEBV more 
precisely and accurately (Jia and Jannink 2012; Guo et al. 
2014; Budhlakoti et al. 2019; Mishra et al. 2021). MTGS based 
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models uses the information of genetically correlated traits 
phenotypic information and low heritability to improve 
genomic prediction (Jia and Jannink 2012; Guo et al. 2014). 
On the other hand, combining multi-trait information 
with efficient selection index structure is often a complex 
and challenging task. The selection index (SI) is a linear 
combination of optimally weighted multiple traits to obtain 
greater overall genetic gains than if traits with independent 
thresholds are selected separately or collectively (Hazel 
and Lush 1942; Hazel 1943). Breeders and biometricians 
have advocated the use of both phenotypic and genomic 
selection indexes (Ceron-Rojaset al. 2015). The phenotypic 
selection index (PSI) is an optimally weighted linear 
combination of various observable phenotypic trait values 
(Smith 1936; Hazel and Lush 1942; Hazel 1943), whereas 
the genomic selection index (GSI) represents a linear 
combination of GEBVs used to evaluate an individual’s net 
genetic merit and accordingly select superior individuals 
from the breeding population. 

Estimation of marker effects to obtain GEBVs by a simple 
linear regression statistical model encounters the problem 
of over-parameterization and multi-colinearity in whole-
genome regression. To overcome this limitation, penalized 
and Bayesian regression models were suggested to estimate 
the marker effects (Meuwissen et al. 2001; de los Campos et 
al. 2011; Gianola 2013). Ridge regression (RR) uses penalized 
least squares techniques by shrinking the effect of the 
markers equally toward zero. However, RR considers that all 
the predictors (i.e. markers in our case) contribute to equal 
variance, which is not true for all the traits (Piepho 2009; 
Meuwissen et al. 2001). Several Bayesian models are available 
to solve this issue, which assume some prior distribution 
for marker effects. The Bayesian approach, based on the 
marker effects’ posterior distributions, provides inference 
about model parameters (Meuwissen et al. 2001; Jia and 
Jannink 2012; Wang et al.2018). In this study, MTGSbased 
models such as standard penalized regression (RR-BLUP) 
and Bayesian regression like Bayes A, Bayes B, Bayes C, and 
Bayesian LASSO (Meuwissen et al. 2001; Habier et al. 2011; 
VanRaden 2008) are used to construct the GSI.

Lande and Thompson (1990) introduced a marker-
assisted selection (MAS) based selection index that 
incorporates marker and phenotypic information and 
evaluated the same using simulated data, further concluded 
that the estimated selection response was higher than 
when only the phenotypic data were used. Togashi et al. 
(2011) suggested four selection indices, based on the BLUP 
theory, in the context of GS; however, these indices are not 
validated with any real or simulated dataset. Ceron-Rojaset 
al. (2015) proposed PSI and GSI theory to estimate the net 
genetic merit,  selection response and expected genetic 
gains per trait that enable the breeders with an objective 
criteria for evaluating and selecting parents based on single 

and multiple traits and also evaluated these indices using 
real and simulated data. The main purpose of both indices 
(PSI and GSI) is to provide objective criteria to breeders to 
select the candidates as parents for a breeding programme 
based on their net genetic merit and maximize selection 
response.

Therefore, this study aimed at applying PSI methodology 
and multi-trait based GS models:standard penalized 
regression method (RR-BLUP) and Bayesian regression 
methods (Bayesian LASSO, Bayes A, Bayes B, and Bayes C) to 
estimate GSIs from breeding population and to evaluate the 
performance of PSI and GSIs on real datasets using suitable 
evaluation measure.

Materials and methods
This study, MTGS based models, such as standard penalized 
regression (RR-BLUP) and Bayesian regression (i.e., Bayes 
A, Bayes B, Bayes C, and Bayesian LASSO) to construct the 
GSI. One such basic model used in MTGS is the multivariate 
linear mixed model; where the marker effects are treated as 
random. Details of same is as follows (Jia  and Jannink 2012):

where  is a matrix  of  phenotypic traits of  
individuals:  is the overall population mean;  is a design 
matrix  corresponding to the  marker genotypes 
of  individuals; is a vector for the  marker 
effects on all  phenotypic traits and assumed normally 
distributed ;  the variance-covariance 
matrix  for marker; ,  is an indicator variable 
with a value of 1 in the presence of a marker  otherwise, its 
value is 0;  is a residual matrix  with row variance 

 (Jia  and Jannink 2012; Wang et al. 2018).
Hereby, MTGS models are used in combining optimal 

attributes for multiple traits simultaneously to construct 
an efficient selection index. A selection index or total 
score is constructed by combining all the traits’ values 
corresponding to their weight components for all the 
traits simultaneously. The weight allocated to each trait 
is determined by its relative economic value, heritability, 
and genetic and phenotypic correlations among the traits 
(Smith 1936). It may be based on phenotypic (i.e., Phenotypic 
Selection Index) or genomic (Genomic Selection Index) 
information.

Phenotypic Selection Index (PSI)
PSI is a linear combination of several observable phenotypic 
traits with optimal economic weighted values and same  can 
be expressed in the following form (Smith 1936):    

where,  be a vector of  
phenotypic trait values and,  
is the vector of coefficients.  is the inverse of the 
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phenotypic covariance matrix ( ), and  is the covariance 
matrix of true breeding values .

Genomic Selection Index (GSI)
The GSI ( ) can be defined as (Ceron-Rojas et al. 2015):

where,  is a  vector of genomic 
breeding values and  is a vector of 
economic weights for individuals.

The GEBV ( ) can be calculated as (Ceron-Rojas et al. 
2015):

where,  will be used as the estimator of the vector of 
marker effects  for  traits in the 
base population and  is anincidence matrix of size  of 
the coded values of marker genotypes.

The genetic merit ( ) can be written as:  

where,  be a vector of true breeding 
values and  is a vector of economic 
weights for individuals.

Performance evaluation measures
• Response to selection
PSI ( ) and GSI ( ) selection response Ceron-Rojas et al. 
(2015) can be explained as (Ceron-Rojas et al. (2015)):

where, and denotes the time required to complete 
one selection cycle and is a covariance matrix of additive 
genomic breeding values .
• Expected genetic gain per trait 
The expected genetic gain per traitper selection cycle for 
GSI ( ) and PSI ( ) (Ceron-Rojas et al. 2015):

where, EPand EGare the expected genetic gain per 
selection cycle for each trait in the PSI and the GSI, 
respectively (Togashi et al. 2011).
• Technow inequality 
To compare GSI and PSI efficiency the ratio of estimated 
GSIs and the PSI selection response given by Technow et 
al. (2013) was used:

Using this criterion, (i)if , GSI efficiency will be greater 
than PSI efficiency, (ii)if , the efficiency of both selection 
indices will be equal, (iii)and if , PSI will be more efficient 
than GSI.
• Correlations or accuracy ofselection indexes (GSI and 

PSI) withthe net genetic merit (H) 
The estimated correlation (or accuracy) between H and 

GSI ( ), and between H and PSI ( ) are given 
below (Ceron-Rojas et al. 2015):

Estimation of the phenotypic variance-covariance matrix 
, the covariance matrix of true breeding values 

( ),  the covariance matrix of additive genomic breeding 
values and residuals matrix ( ), respectively can be 
obtained by using analysis of variance (ANOVA) (Lynch and 
Walsh 1998), maximum likelihood, or restricted maximum 
likelihood (REML) (Patterson and Thompson 1971).

Experimental dataset
In order to evaluate the performance measures of different 
GS models, two F2 biparental maize populations from 
Beyene et al. (2015) were used in the study, which were 
denoted as JMpop1 DTMA Mexico optimum environment 
(dataset 1) and JMpop3 DTMA Mexico optimum environment 
(dataset 2). Each dataset contains genotypic data and four 
phenotypic traits: grain yield (GY, t/ha), plant height (PHT, 
cm), ear height (EHT, cm), and thesis days (AD, days). Dataset 
1 contained 247 lines (individuals) which were genotyped 
for 195 markers, while dataset 2 had 396 lines genotyped for 
190 markers. As the breeding objective was to increase GY 
while decreasing PHT, EHT, and AD, so accordingly economic 
weights were provided (Beyene et al. 2015) denoted as, w 
= (2 - 0.3 - 0.3 - I), respectively. The top 10% of individuals 
w.r.t. PSI and GSI (i.e., k = 1.75) were selected from the two 
data sets, respectively. Here, the time required to complete 
one GSI selection cycle (generation interval) was = 1.5 
years, whereas for one PSI selection cycle, it was  = 4 
years (Beyene et al. 2015).

In the current study, two real datasets were analysed 
considering all the four traits (i.e., GY, PHT, EHT, and AD). In 
each selection cycle, four different evaluation measures were 
used in the analysis. The estimated GSI and PSI selection 
responses, the estimated expected genetic gain for each 
trait in the PSI and the GSI, the estimated comparison of 
PSI and GSI efficiency and the correlations between the GSI 
and PSI with the true net genetic merit were computed. To 
rank the overall performance of GSI and PSI models used 
in the current study, the Technique for order of preference 
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by similarity to ideal solution (TOPSIS) was used. TOPSIS is 
based on multi-criteria decision-making/analysis, which was 
developed by Hwang and Yoon (1981) and implemented in R 
package ‘topsis’. All the analyses were performed using the 
R programming platform (R Development Core Team 2022).

Results and discussion

Correlations/accuracy of GSI and PSI with the true 
net genetic merit (H) 
As expected, the correlation between GSI and H tends to 
decrease more than the correlation between PSI and H in 
both datasets (Fig. 1). The likely reason behind this is that 
the estimated value of PSI was calculated using  only the 
phenotypic information, whereas the estimated value of GSI 
was calculated using five different GS models (i.e., RR-BLUP, 
Bayesian LASSO, BayesA, BayesB and BayesC) using only 
the newly generated SNP genotypic information from the 
breeding population. It was observed that the correlation 
between PSI and H for dataset 1 and 2 was 0.95 and 0.42, 
respectively, whereas the correlation between GSI and H 
using five different GS models ranged between 0.45–0.57 
for dataset1 and 0.19–0.29 for dataset 2, respectively (Fig. 
1). More specifically, Bayesian-based GSI (GSI_BLASSO, GSI_
Bayes A, GSI_Bayes B and GSI_Bayes C) methods have higher 
correlation with net genetic merit than penalized regression 
based GSI (GSI_RR-BLUP) method in both datasets. The 
maximized correlation of the indexes with the net genetic 
merit signifies the accuracy of the indexes, which is different 
from the Technow inequality (i.e., efficiency comparison 
among indexes in terms of generation interval). We used 
the Fisher z-test to test the significance of the correlation 
coefficient and observed that the correlation coefficient is 
significant (p-value<0.0001) for all possible comparisons. 

Estimated PSI and GSI selection response 
The selection response represents the mean value of the 
future unseen population generated from the selected 
parents. The observations in the present study, that most 
of the GSI selection response was more efficient than 
the PSI selection response in both datasets, where the 
generation interval are taken into consideration to elaborate. 
When the generation interval increases, the GSI selection 
response decreases because the additive genomic variance-
covariance decreases after each generation. The estimated 
selection could be more specifically observed (Table 1), it was 
concluded that Bayesian-based GSI selection response (RGBL 
, RGBA, RGBB  and RGBC) was higher in comparison to penalized 
regression based GSI response to selection (RGRR) in both 
the datasets.

Estimated expected genetic gains for PSI and GSI 
Expected genetic gain per trait or multi-trait selection 
response represents the mean of each trait of candidates 

under selection. It was observed that the estimation of 
expected genetic gain for each trait, it was believed that 
GY, PHT, and EHT traits were higher in GSI based (EGBL ,EGBA 
,EGBB  and EGBC) genetic gain in comparison to the  PSI based 
expected genetic gains for dataset 1 (Table 2).

The results of dataset 2 were presented in Table 3, it 
can be observed that genetic gain per trait was higher in 
GSI-based (EGRR , EGBL ,EGBA , EGBB and EGBC) genetic gain in 
comparison to the PSI-based expected genetic gains. In both 
the datasets, all GSI-based models led to increased rates of 
genetic gain per trait than PSI-based model, presumably, 
because PSI takes about years to complete each selection 
cycle, whereas GSI takes around 1.5 years (Beyene et al. 2015).
To rank, the overall performance of the GSI-based and PSI 
model TOPSIS method was used (Hwang and Yoon 1981). 

Technow Inequality f
Technow inequality is the selection response ratio for 
comparing the efficiency of selection indices. Technow 
inequality  i.e., selection response ratio, is a good criterion 
as it contains all the information on genetic gain of each 
selection indices considering generation interval. The results 
in Table 4, the estimated GSI (including five different GS 
models-based GSI selection responses) and the PSI selection 
response ratios considering varying generation intervals 
with same selection intensity. However, GSI efficiency was 
higher than PSI efficiency because the period between 
selection cycles in GSI is shorter in comparison to PSI, with 
respect to datasets under consideration in the current study. 

Fig. 1. Correlations of GSI and the PSI with the true net genetic  
merit (H) 

Table 1. Estimated PSI and GSIs (for five GS models) selection response

Response to Selection (*R) Dataset 1 Dataset 2

RPSI 0.93 1.94

RGSI_RR-BLUP 0.38 1.98

RGSI_BLASSO 0.94 1.97

RGSI_Bayes A 0.95 2.05

RGSI_Bayes B 0.95 2.05

RGSI_Bayes C 1.16 1.99
*RPSI = Response to selection of PSI, RGSI_RR-BLUP = Response to selection 
of GSI using RR-BLUP, RGSI_BLASSO = Response to selection of GSI using 
Bayesian LASSO, RGSI_Bayes A = Response to selection of GSI using Bayes 
A, RGSI_Bayes B = Response to selection of GSI usingBayes B and RGSI_Bayes C 
= Response to selection of GSI using Bayes C
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Table 2. Expected genetic gains for the PSI and GSIs (for five GS models) using dataset 1 

Expected genetic gain (*E) GY PHT EHT AD Rank

EPSI 0.16 -0.85 -0.48 0.04 4

EGSI_RR-BLUP 0.05 7.40E-07 6.51E-07 -0.12 6

EGSI_BLASSO 0.16 -0.16 -0.13 -0.04 2

EGSI_Bayes A 0.16 -0.12 -0.18 0.04 5

EGSI_Bayes B 0.15 -0.16 -0.31 -0.05 3

EGSI_Bayes C 0.20 -0.18 -0.24 -0.03 1
*EPSI = Expected genetic gain of PSI, EGSI_RR-BLUP = Expected genetic gain of GSI using RR-BLUP, EGSI_BLASSO = Expected genetic gain of GSI using 
Bayesian LASSO, EGSI_Bayes A  = Expected genetic gain of GSI using Bayes A, EGSI_Bayes B = Expected genetic gain of GSI using Bayes B and EGSI_Bayes C = 
Expected genetic gain of GSI using Bayes C

Table 3. Expected genetic gains for the PSI and GSIs using dataset 2 

Expected genetic gain (*E) GY PHT EHT AD Rank

EPSI 0.002 -7.86 -7.65 1.32 5

EGSI_RR-BLUP 0.0006 -7.10 -6.63 2.14 6

EGSI_BLASSO 0.003 -6.93 -6.45 2.10 1

EGSI_Bayes A 0.002 -7.24 -6.71 2.14 3

EGSI_Bayes B 0.002 -7.06 -6.82 2.13 4

EGSI_Bayes C 0.003 -6.91 -6.37 2.11 2
*As per footnote in Table 1

Table 4. Selection response ratio/Technow inequality for comparison 
of GSI and PSI efficiency

Selection efficiency ratio ( ) Dataset 1 Dataset 2

/ 0.40 1.02

/ 1.01 1.01

/ 1.02 1.05

/ 1.02 1.05

/ 1.24 1.02

However, the success of GS based breeding programme 
is determined by the characteristics of the population, 
such as trait heritability and the genetic architecture under 
study. The GEBVs based superior individual genotypes 
have proven to be incredibly accurate in empirical research 
(Lande et al. 2011). Because GEBVs are themselves indices, 
the GSI is defined as a linear combination of them, and it 
is a genomic predictor of net genetic merit, whereas the 
PSI is a phenotypic predictor of net genetic merit for the 
selection of a candidate (Robinson 1991; Togashi et al. 2011). 
In general, the PSI is expected to have a greater selection 
response and be more accurate than the GSIs in cases, 
where the generation interval is ignored, otherwise vice-
versa. When the generation interval is taken into account, 
the GSI requires one-third or less of the time required by PSI 
in terms of genetic gain per trait per unit of time (Lorenz et 
al. 2011). Many reports have been published on generation 
interval reduction in breeding methods, such as in beef 
cattle (Gutierrez et al. 2003; Mc Parland et al. 2007), sheep 
(Joakimsen 1969; Mokhtari et al. 2014), and goat (Rashidi et 
al. 2015) populations. The implementation of generation 

interval under the GS paradigm has significantly reduced 
breeding interval in chickens from 12 to 6 months (Dekkers 
2007) and in dairy cattle from 5–6 years to 1.5 years (Pyrce 
and Daetwyler, 2012). Implementation of generation interval 
in GS programmes, GSI will be more efficient than PSI, as 
evident by the Technow inequality (Table 4). However, if 
the number of markers is limited, GSI selection responses 
will provide lower values than PSI selection responses, and 
PSI efficiency will outperform GSI efficiency. Moreover, the 
PSI and GSI selection responses will be comparable, if the 
number of markers is very high. In conclusion, as indicated 
by the Technow inequality in terms of a unit of time, GSI will 
be more efficient than PSI only if

 

 otherwise, PSI 
will be more efficient than GSI.

In the present study, four independent criteria were used 
to evaluate the performance of GSI and PSI methodology 
for multiple-trait using two real datasets. Correlations of 
the PSI and GSI with the true net genetic merit, the PSI 
and GSI selection response, the PSI and GSI predicted 
genetic gain per trait per unit of time, and the Technow 
inequality, to examine the theory of PSI and GSI efficiency. 
The observation of our study shows that GSI efficiency 
was slightly higher than PSI efficiency per unit of time or 
generation interval except for GSI based on rrBLUP. Another 
important finding from this study was that the Bayesian-
based GSI has slightly better performance than penalized 
regression-based GSI. It can be suggested, that GSI is a better 
option for selecting candidates or individuals under multi-
trait genomic selection.
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