
Abstract
Though the non-coding RNAs (ncRNAs) do not encode for proteins, they act as functional RNAs and regulate gene expression besides 
their involvement in disease-causing mechanisms and epigenetic mechanisms. Thus, discriminating ncRNAs from coding RNAs (cRNAs) is 
important in transcriptome studies. Several machine learning-based classifiers, including deep learning classifiers, have been employed 
for discriminating cRNAsfrom ncRNAs. However, the performance comparison of such classifiers in plant species is yet to be ascertained. 
Thus, in the present study, the performance of the classifiers such as Deep Neural Network (DNN), Random Forest (RF), Support Vector 
Machine (SVM), and Artificial Neural Network (ANN) were evaluated for classifying cRNAs and ncRNAsby using the datasets of plant 
species including crops such as rice, wheat, maize, cotton, sunflower, barley, banana, grape, papaya. Further, the performance of 
classifiers was assessed by following the cross-validation process as well as by considering an independent test data set of 3,997 cRNAs 
and 4,110 ncRNAs. The results revealed that Random Forest classifier exhibited highest performance accuracy (99.803%) among the 
machine learning classifiers, followed by DNN (99.519%), SVM (97.364%) and ANN (99.260%). The present study is expected to help 
computational and experimental biologists for easy discrimination between coding and non-coding RNAs.
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Introduction
The RNAs are broadly classified into two classes, namely, 
coding RNAs (cRNAs) and non-coding RNAs (ncRNAs). 
Advances in the transcriptome studies reveal the presence 
of numerous types of ncRNAs such as lncRNAs, lincRNAs, 
circRNAs, piRNAs, SRPs, tmRNAs, Rnase P, Rnase MRP, besides 
commonly known ones like tRNA, rRNA, snRNA, snoRNA, 
miRNA in the transcriptome. Recent studies divulged 
that majority of the genomes of higher organisms are 
composed of ncRNAs (Davidson  et al. 1977;  Mattick and 
Gagen 2001;  Shabalina  et al. 2001). The ncRNAs perform 
various roles like gene expression regulation (Meister et al. 
2004), mRNA splicing (Padgett 2001; Valadkhan 2005), RNA 
modification (Liang et al. 1995; Kiss et al. 2002; Falaleeva et al. 
2016), chromatin modulation (Shevchenko 2018) and others. 
With the reports on various types of ncRNAs like lncRNAs, 
circRNAs, the distinction between the two classes have 
become more difficult as many of them are even longer than 
the coding RNAs, thereby mimicking cRNAs. Thus, accurate 
classification of cRNAs and ncRNAs need to be reassessed 
from the viewpoint of understanding the epigenetic 
mechanisms in phenotypic variation and evolution.

In the recent past, with the advent of Next Generation 
Sequencing (NGS) technologies, there was a surge in the 

availability of plant transcriptome data in the public domain 
(https://plants.ensembl.org/info/data/ftp/index.html). So, 
there is a need to analyse such huge amount of data and 
distinguish ncRNAs from cRNAs as well as to investigate 
their function and evolution. Since the wet-lab based 
experiments consume lot of resources both in terms of time 
and money for distinguishing cRNAs from ncRNAs, use of 
computational techniques could be a better alternative. 
Many computational and experimental strategies have 
been deployed so far to classify coding and non-coding 
RNAs. The CST miner (Castrignanò et al. 2004), an alignment-

http://www.ijpbr.in/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084129/#kve230c12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084129/#kve230c46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084129/#kve230c46
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084129/#kve230c60
https://plants.ensembl.org/info/data/ftp/index.html
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based method, uses cross-species genome comparison to 
identify coding and non-coding conserved sequence tags. 
Likewise, QRNA (Rivas and Eddy 2001) uses Pair Hidden 
Markov Models (PHMMs), and CRITICA (Badger and Olsen 
1999) uses comparative sequence analysis for identifying 
coding regions.  The EST scan (Iseli et al. 1999) employs HMM 
to identify coding sequences from ESTs, and the RNA code 
(Washietl et al. 2011) uses multiple sequence alignment to 
discriminate between coding and non-coding regions. Now 
with the availability of a large number of coding and non-
coding RNA sequences, machine learning-based approaches 
have become more prevalent. Several in silico tools such as 
CONC (Liu et al. 2006), CNCI (Sun et al. 2013), CPC (Kong et al. 
2007), PLEK (Li et al. 2014), RNAcon (Panwar et al. 2014), CPC2 
(Kang et al. 2017) have been developed for discrimination 
of coding and non-coding RNAs by using the Support 
Vector Machines. Further, LncRNA-ID (Achawanantakun 
et al. 2015) and LncRNApred (Pian et al. 2016) use Random 
Forest for classification of ncRNAs and cRNAs. The PlncPRO 
(Khemka and Singh 2017) uses plant RNA sequences to 
train a Random Forest classifier to classify plant coding and 
long non-coding RNAs (lncRNAs). Of late, deep learning 
algorithms are being widely used for classification tasks, 
as deep learning yielded excellent results in speech 
recognition (Hinton et al. 2012), computer vision (Krizhevsky 
et al. 2012), and natural language processing (Mikolov et 
al. 2011). In this direction, DeepLNC (Tripathi et al. 2016) 
has been developed for classifying long non-coding RNAs 
(lncRNAs) from coding RNAs using Deep Neural Network 
(DNN). However, there is a need to assess the performance 
of various machine learning algorithms and deep learning 
algorithms for the classification of plant coding and ncRNAs. 
Here, in the present investigation, the performances of four 
learning classifiers, viz., Random Forest (RF), Support Vector 

Machines (SVM), Artificial Neural Networks (ANN), and 
Deep Neural Networks (DNN) were assessed and compared 
for identification of efficient classifiers for discriminating 
coding and non-coding RNAs in 63 plant species including 
important crops.

Materials and methods

Data collection and preparation
The coding and non-coding transcript sequences of 63 
plant species, covering cereals, pulses, oilseeds, fruits, and 
forestry trees, were downloaded from the EnsemblePlants 
database (Bolser et al. 2016; https://plants.ensembl.org/info/
data/ftp/index.html). Since the size of the datasets is large, 
representative sample of coding and non-coding sequences 
were drawn by keeping the respective proportion of 
sequences from each crop species intact. Then, the 
sequences with more than 80% similarity and ambiguous 
nucleotides were removed within each set of coding and 
non-coding sequences by using CD-HIT (http://weizhongli-
lab.org/cd-hit/). Finally, a total of 19987 and 20550 sequences 
were found in coding and non-coding sets. To avoid the 
prediction bias towards the class having higher number of 
sequences, balanced dataset comprising of 15990 cRNAs 
and 16440 ncRNAs were used to train the model and 3997 
and 4110 respective sequences of coding and non-coding 
RNAs were utilized as independent test set. 

Feature extraction
The sequence data cannot be used as such as input for 
training and testing of machine learning classifiers. Thus, 
information from each sequence was converted into 
numeric form by feature extraction. A total of 1472 sequence 
features were generated (Table 1).

Table 1. Summary of the feature set used to map the input sequences into numeric feature vectors

S. No. Feature Name Description #Feature

1 Transcript length Length of the transcript sequences. 1

2 ORF length Length of the longest putative open reading frame (ORF) among the 6 frames. 1

3 ORF coverage Ratio of ORF length to transcript length. 1

4 Peptide length Length of the protein sequence coded by the longest ORF. 1

5 K-mer frequencies Frequencies of k-mers (k= 1, 2, 3, 4, 5). 1364

6 BLAST features By considering Swiss-Prot protein sequences as database and transcripts as query sequence 
(i) number of blast hits, (ii) average length of alignment of the blast hits, (iii) average percent 
identity of the blast hits, (iv) average of e-values and (v) average of bit-scores of the blast hits.

5

7 Amino acid 
composition

Percentage of 20 amino acids in the putative protein sequences. 20

8 Molecular weight Molecular weight of the putative proteins of the transcripts. 1

9 Isoelectric point The theoretical isoelectric point (pI) values of the putative proteins. 1

10 GC% Per cent Guanine and Cytosine content calculated with a PERL script. 1

11 Codon Bias Indices Percentage of nucleotides (A, C, G, T) in third position of codons, Codon Adaptation Index (CAI), 
Codon Bias Index (CBI), number of synonymous codons, gravy, AROMO.

12

12 RSCU Relative Synonymous Codon Usage for 64 codons. 64

https://plants.ensembl.org/info/data/ftp/index.html
https://plants.ensembl.org/info/data/ftp/index.html
http://weizhongli-lab.org/cd-hit/
http://weizhongli-lab.org/cd-hit/
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For the extraction of features: transcript length, 
ORF length, ORF coverage, Peptide length, amino acid 
composition, molecular weight, isoelectric point and GC%, 
in-house perl scripts were developed. Whereas, for k-mer 
features, BLAST features, codon bias indices and RSCU, 
respective R-scripts were used. The transcripts for which 
no BLASTX hits were found, the values of number of hits, 
average length of alignment, average percent identity 
and average bit-score were treated as zero. Similarly, the 
corresponding e-values were given the values as (mode+1) of 
the e-values in the set. The features which were dependent 
on the length of the transcript sequences were normalized.

Feature Selection
Feature selection is an important aspect of model building 
to achieve maximum accuracy, as all the extracted features 
do not contribute to the model accuracy.  In fact, some 
features may negatively affect the model accuracy. To select 
important features, two algorithms, namely, Random Forest 
(RF) (Breiman 1996, 2001; Boruta Kursa and Rudnicki 2010) 
were employed. In case of RF, variable importance measure: 
the prediction error on the out-of-bag data, is recorded for 
each variable before and after permuting the variable for 
each classification tree. The difference between the two are 
then averaged over all trees and normalized by the standard 
deviation of the differences. The more is the value of mean 
decrease in accuracy, the higher is the importance. Boruta 
(Kursa and Rudnicki 2010) algorithm is a variant of RF variable 
importance measure. It searches for a minimal subset of 
features from the dataset that are important in performance 
of the model with regard to classification accuracy, unlike 
ranking of features in RF algorithm. The Boruta algorithm 
works by adding another layer of randomness to the given 
data set by creating shuffled copies of all features, known 
as shadow features. At each iteration, Boruta check whether 
a real feature has higher importance than the best of its 
shadow features and constantly removes the irrelevant 
features. Finally, the algorithm stops either when all features 
get  confirmed or rejected or reaches a specified limit of 
random forest runs. Here, the feature selection was done 
by considering results of RF and Boruta algorithms. The 
accepted features from both Boruta and RF together were 
finally considered for downstream analysis.

Prediction with machine learning and deep learning 
algorithms
The standard machine learning techniques, viz., ANN 
(McCulloch and Pitts 1943), SVM (Boser et al. 1992), RF 
(Breiman 1 2001) and deep learning algorithm: DNN 
(Ivakhnenko 1967) were used for the classification of cRNAs 
and ncRNAs. The machine learning and deep learning 
techniques were implemented through respective packages 
of R-software. The trees.h2o.randomForest function of the 
“h2o” R-package was utilized to execute the random forest 

(RF) model. A total of 100 classification trees (ntree) were 
constructed and 21 features (mtry) were considered for 
each split of a node for each classification tree. The SVM is 
a modern classification technique and the performance of 
which depends upon the choice of kernel function. A highly 
referred R-package “e1071” was adopted to train the SVM 
model with Radial Basis Function (RBF) as the kernel function 
with default parametric values of cost and gamma. The 
parameters of the ANN classifiers are the number of units 
in the hidden layer, number of hidden layers and activation 
function. The “neuralnet” R-package was used for training 
the ANN. Single hidden layer with three units was considered 
here, where the activation function used was tanh.

In general, machine learning algorithms learn from the 
data representations that are to be selected carefully to 
capture the underlying intrinsic characters of the data as 
well as to map to the outputs correctly. A major problem 
in machine learning is the choice of data representations, 
also referred as “representation learning”. Deep learning is 
a sub field of representation learning and it solves complex 
problems by representations that are expressed in terms 
of simpler representations. Deep learning algorithms 
(DLAs) learn complex concepts by decomposing them into 
simpler concepts. DLAs do not need feature engineering 
as they can learn the features and decide the features that 
effectively map the input to the output. DLAs are data driven 
techniques that need huge amount of data for learning 
and the parameters like number of hidden layers, number 
of units in each hidden layer, epoch, activation function, 
learning rate, input layer dropout ratio etc. are called hyper 
parameters. R package h2o was used to train the DNN 
classifier for binary classification with (i) three hidden layers, 
(ii) tanh activation function (iii) 200 epochs, (iv) learning rate 
0.002, and (v) input drop out ratio 0.5.

k-fold cross-validation
Inferring the results from single training and testing sets is 
often biased (Rafaeilzadeh et al. 2009). Thus, K-fold cross 
validation technique was employed by splitting the data 
K-times and taking the averages of performance metrics 
over K-folds. A 10-fold cross validation was used where each 
dataset was divided into ten equal parts and each time nine 
parts were used to train the model and one part was kept 
for testing. The classification accuracy was obtained as an 
average over 10-folds.

The source code developed for execution of machine 
learning and deep learning algorithms along with k-fold 
cross validation are given in Supplementary Table S1: model-
codes.R. The workflow showing the steps for assessing the 
performance of binary classifiers is given in Fig. 1.

Model testing and performance metrices
Performance metrics such as accuracy, sensitivity, specificity, 
precision, F-1 score and Matthews Correlation Coefficient 
(MCC) were measured to evaluate the performance of the 
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classifiers. The metrics are as follows:
Accuracy = (TP+TN)/(TP+FN+FP+TN)

Sensitivity = TP/(TP+FN)
Specificity = TN/(TN+FP)

Precision = TP/(TP+FP)
F-1 score = 2*recall*precision/(recall+precision), where 

recall is same as sensitivity for the binary classification
MCC = [(TP*TN)-(FP*FN)]/sqrt[(TP+FP)(TP+FN)(TN+FP)
(TN+FN)]
Here, TP = True positive, TN = True negative, FP = False 
positive and FN = False negative

Results and discussion
A total of 15990 coding RNA and 16,440 non-coding RNA 
sequences were selected for training the classifiers, after 
removing sequences with more than 80% similarity and 
ambiguous nucleic acids in each of the classes. Further, a 
total of 3997 and 4110 sequences of coding and non-coding 
RNAs, respectively were set aside as independent test 
dataset to evaluate the performances of the trained models. 
To assess the level of similarity between the sequences of 
binary classes of the training dataset, CD-HIT-2D was used at 
percent similarity levels, viz., 90, 80, 70, 60 (Table 2). Results 
revealed that 21.8% of the total training sequences share at 
least 60% between class similarity, which in turn ascertains 
the discriminating power of the feature sets to distinguish 
the two classes of RNAs by various classifiers. This ensures 
accurate classification of coding and non-coding RNAs by 
classifiers, even if there is a good amount of similarity exists 
at the sequence level.

A total of 1,472 features from an exhaustive search of 
literature were considered to discriminate coding and non-

coding RNAs. Feature selection was done by assessing the 
importance of each feature by employing two different 
algorithms: Random Forest variable importance measure 
and Boruta. Random forest ranked each variable based on 
their decrease in mean accuracy whereas Boruta used mean 
importance, to rank the features. RF showed lowest decrease 
in mean accuracy when penta-mers were excluded from 
the feature set. A similar result has also been revealed by 
Boruta algorithm, which has labelled penta-mer features 
as “rejected”. So based on these results from both RF and 
Boruta, penta-mer features were not used for training the 
classification models. Thus, it was found that mono-, di-, 
tri- and tetra-mers mostly contribute to the variations on 
genome as well as for binary classification. After discarding 
the penta-mer features, a total of 448 features were selected 
for training the models. The classifiers, namely, RF, SVM, 
ANN, DNN were trained with the same training dataset 
and with the selected features. In all the models, a 10-fold 
cross-validation was performed and the average accuracy 
over 10-folds for different classifiers are presented in Fig. 2.

The average accuracy from 10-fold cross-validation of the 
classifiers revealed in Fig. 2 that RF showed highest accuracy 
(99.85%), followed by DNN (99.74%), ANN (99.34%) and SVM 
(98.60%). Liu et al. (2006) trained a SVM based classifier 
with cDNAs collected from GenBank, corresponding to 
all the eukaryotic protein sequences present in Swiss-
Prot database, and ncRNAs from RNADB and NONCODE 
databases. After filtering out similar sequences, finally, 
used 5,610 and 2,670 sequences as coding and non-coding 
data sets and extracted 180 protein features as input for 
classification. They reported higher specificity and sensitivity 
of 97% and 98%, respectively for SVM classifier, built-in in 
the developed classifier CONC when compared to naïve 
Bayes classifier under 10-fold cross-validation. Kong et al. 
(2007) trained SVM classifier by using 5,610 coding cDNAs 
and 2,670 ncRNAs, that were used in training CONC tool, 
with 6 sequence features and reported the performance of 
10-fold cross-validation accuracy as 95.77%.
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Fig. 1. Workflow for development of binary models

Table 2. Similarity between coding and non-coding classes

Between class 
similarity (%) No. of similar sequences

90 28

80 86

70 1,169

60 7,064

Fig. 2. Average prediction accuracy of the models from 10-fold cross 
validation accuracy
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The performance of the classifiers was also assessed 
by using the independent test data set of 8,110 sequences. 
23.07% out of total 8110 sequences were having more than 
60% similarity while comparing the sequences between 
the two classes. Performances of the classifiers were 
assessed based on the metrics like accuracy, sensitivity, 
specificity, precision, F1-score and MCC. Table 3 represents 
the comparative performance measures of the classifiers 
and Table 4 gives the confusion matrix based on which the 
performance metrics were calculated. It is evident from 
Tables 3 and 4 that RF has highest performance accuracy for 
classification of coding and non-coding RNAs. A comparison 
of the proposed approach involving RF with the existing 
models using similar techniques, in terms of performance 
metrics, is given in Table 5. It is observed that the proposed 
approaches: involving RF, SVM and DNN individually, have 
exhibited higher accuracy over the existing models which 
used similar machine learning techniques.   A sample list of 
coding and non-coding RNAs of various plant species along 
with their identification number, probability of classification 
and predicted classes are shown in Table 6. The probability 
p0 indicates the observation being classified as non-coding 
RNA and p1 indicates the observation being classified as 
coding RNA (Table 6).

Kong et al. (2007) tested SVM based classifier, CPC, with 
3 independent datasets viz., Rfam and RNADB non-coding 
database and EMBL CDS, and reported the performance 
accuracies as 98.62%, 91.50% and 99.08%, respectively. Kong 
et al. (2017) used human 17,984 coding and 10,452 non-
coding sequences, extracted 4 sequence intrinsic features 
by Random Forest to develop a SVM based tool called CPC2. 
CPC2 reported 96.1%, testing accuracy 97% specificity and 
95.2% sensitivity. In the present study, the SVM based model 
exhibited 97.364% accuracy, 92.2% specificity and 97.9% 
sensitivity. The present findings in the results corroborate 
the earlier findings of Kong et al. (2007). In a similar way, Pian 
et al. (2016) trained a Random Forest classifier using 33,665 
lncRNAs and 38,229 mRNA sequences that showed 97.38% 
accuracy as compared to SVM’s 96.21% and ANN’s 96.49% 
accuracy, which are in line with the findings of the present 
study where RF exhibited higher accuracy of 99.803% as 
compared to SVM (97.364%) and ANN (99.260%). Tripathi et 
al. (2016) classified lncRNAs from coding RNAs using deep 
neural network model by DeepLNC tool. They trained 
DeepLNC with 80,214 lncRNAs collected from LNCipedia 
and 99,395 coding sequences from RefSeq with 1104 
k-mer features as model input. DeepLNC reported 98.07 % 
accuracy, sensitivity of 98.98 %, and specificity of 97.19 % 
and out-performed other tools based on machine learning 
algorithms like RF, SVM. On the contrary, the present results 
revealed better performance of RF over DNN (99.519%), 
SVM and ANN. 

Deep Gene (Yuan et al. 2016) a deep learning-based 
cancer type classifier when compared with machine learning 
classifiers like SVM, showed higher accuracy of classification 
by at least 24%. In fields like drug discovery, DNN out-
performed SVM (Korotcov et al. 2017). Their findings are 
similar to that of the results being reported from the present 
study, where in DNN has 99.519% accuracy and SVM has 
97.364% accuracy.  

Cho et al. (2018) developed classifiers for source tracking 
of chemical leaks reported that three classifiers trained with 
RF out-performed other six classifiers trained with DNN, 
based on accuracy and error. In the present study we also 
came out with similar result where RF performed better than 
DNN. Although, Cho et al. (2018) concluded that RF may 
not always out-perform DNN in leak detection, however, 
with the wide variety of different structural models of deep 
learning like CNN, RNN, Auto-encoders, the performance of 
the deep learning methods can be improved. 

Table 3. Comparison of classifiers based on performance metrics using independent test data

Method Accuracy (%) Sensitivity Specificity Precision F1-score MCC

DNN 99.519 0.994 0.996 0.996 0.995 0.990

RF 99.803 0.997 0.999 0.999 0.998 0.996

SVM 97.364 0.979 0.922 0.992 0.985 0.854

ANN 99.260 0.989 0.996 0.996 0.993 0.985

Table 4. Confusion matrix of the classifiers from independent test 
dataset

Method TP FP FN TN

RF 4098 4 12 3996 

DNN 4087 16 23 3984 

SVM 4077 33 88 392 

ANN 4065 15 45 3985 

Table 5. Comparison of the developed models with the existing 
models/tools

Method Accuracy Sensitivity Specificity

RF (present approach) 99.80 99.70 99.90

LncRNA-ID (RF) 95.78 96.28 95.28

LncRNApred (RF) (mouse) 94.30 95.27 93.48

PLncPRO (RF) 83-99.5 - -

SVM (present approach) 97.36 97.90 92.20

CPC1 (SVM) 93.20 99.50 87.30

CPC2 (SVM) 96.10 95.20 97.00

DNN (present approach) 99.52 99.40 99.60

DeepLNC (DNN) 98.07 98.98 97.19
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Table 6. Sample list of cRNAs (‘1”) and ncRNAs (“0”) of different plant species along with their probabilities classification and predicted classes 

Plant spp. Classification coding RNA

Gene Id Observed Class P0 P1 Predicted 
class

Ostreococcus lucimarinus CCE9901 (green 
algae)

ABO99537 1 0.001 0.999 1

Aegilops tauschii subsp. strangulata (monocots) AET7Gv20347800.3 1 0.085 0.915 1

Arabidopsis thaliana AT1G56225.1 1 0.288 0.712 1

Arabidopsis thaliana AT4G38401.1 1 0.629 0.371 0

Brassica oleracea var. oleracea (wild cabbage) Bo1g082480.1 1 0.001 0.999 1

Brassica rapa Bra037076.1 1 0.070 0.930 1

Chondrus crispus (carragheen) CDF39906 1 0.011 0.989 1

Brassica napus CDY65930 1 0.111 0.889 1

Dioscorea cayenensis subsp. rotundata (Guinea 
yam)

Dr00025.1 1 0.001 0.999 1

Galdieria sulphuraria (red algae) EME27915 1 0.000 1.000 1

Theobroma cacao EOX91046 1 0.011 0.989 1

Amborella trichopoda ERM99382 1 0.001 0.999 1

Amborella trichopoda ERN03221 1 0.052 0.948 1

Phaseolus vulgaris ESW09909 1 0.022 0.978 1

Phaseolus vulgaris ESW19603 1 0.110 0.890 1

Musa acuminata subsp. malaccensis (wild 
Malaysian banana)

GSMUA_Achr11T03940_001 1 0.031 0.969 1

Musa acuminata subsp. malaccensis (wild 
Malaysian banana)

GSMUA_Achr8T29260_001 1 0.560 0.440 0

Gossypium raimondii (eudicots) KJB50375 1 0.021 0.979 1

Beta vulgaris subsp. vulgaris (Sugar beet)  KMT20152 1 0.060 0.940 1

Oryza longistaminata (monocots) KN539468.1_FGT001 1 0.000 1.000 1

Vigna angularis (adzuki bean) KOM56766 1 0.000 1.000 1

Brachypodium distachyon KQJ99783 1 0.275 0.725 1

Setaria italica KQK87785 1 0.001 0.999 1

Setaria italica KQL27937 1 0.569 0.431 0

Glycine max KRG92471 1 0.001 0.999 1

Glycine max KRH76837 1 0.000 1.000 1

Sorghum bicolor KXG39011 1 0.021 0.979 1

Daucus carota subsp. sativus (carrot) KZM94941 1 0.001 0.999 1

Daucus carota subsp. sativus (carrot) KZN11081 1 0.458 0.542 1

Manihot esculenta OAY52937 1 0.022 0.978 1

Oryza brachyantha OB07G28880.1 1 0.031 0.969 1

O. barthii OBART03G05550.1 1 0.001 0.999 1

Oryza glumaepatula OGLUM01G13690.1 1 0.001 0.999 1

Nicotiana attenuata (eudicots) OIT40279 1 0.028 0.972 1

Lupinus angustifolius (narrow-leaved blue 
lupine)

OIV99006 1 0.200 0.800 1

Lupinus angustifolius (narrow-leaved blue 
lupine)

OIW04334 1 0.213 0.787 1

Oryza meridionalis OMERI12G03230.1 1 0.001 0.999 1

(Contd. .......)

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=4528&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=3914&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=79200&lvl=3&lin=f&keep=1&srchmode=1&unlock
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Corchorus capsularis (jute) OMO53783 1 0.000 1.000 1

Corchorus capsularis (jute) OMP00050 1 0.030 0.970 1

Prunus persica ONI35610 1 0.257 0.743 1

Oryza nivara ONIVA08G10880.1 1 0.115 0.885 1

Oryza punctata OPUNC01G38110.1 1 0.101 0.899 1

Sorghum bicolor OQU91703 1 0.001 0.999 1

Oryza glaberrima ORGLA05G0029800.1 1 0.000 1.000 0

Oryza rufipogon (monocots) ORUFI12G21890.1 1 0.560 0.440 1

Oryza sativa, Japonica Group (Japanese rice) Os02t0759500-01 1 0.011 0.989 1

Helianthus annuus (common sunflower) OTF90324 1 0.001 0.999 1

Helianthus annuus (common sunflower) OTG28704 1 0.041 0.959 1

solanum tuberosum PGSC0003DMT400096199 1 0.319 0.681 1

Populus trichocarpa (black cottonwood) PNS96742 1 0.222 0.778 1

Populus trichocarpa (black cottonwood) PNT48868 1 0.000 1.000 1

Chlamydomonas reinhardtii PNW79620 1 0.080 0.920 1

Physcomitrium patens (mosses) Pp3c20_10750V3.2 1 0.010 0.990 1

Glycine max RCW18896 1 0.051 0.949 1

Triticum aestivum TraesCS6
A02G182100.1

1 0.014 0.986 1

Triticum uratu TRIUR3_16468-T1 1 0.050 0.950 1

Eragrostis curvula TVU51707 1 0.067 0.933 1

Homo sapiens (human) VIT_18s0001g02630.t01 1 0.041 0.959 1

Vigna radiculata Vradi03g00460.1 1 0.001 0.999 1

Prunus dulcis (almond) VVA40890 1 0.050 0.950 1

Zea mays Zm00001d053935_T011 1 0.010 0.990 1

Classification of ncRNAs

Amborella trichopoda AMTR_s00172t00274680 0 0.960 0.040 0

Amborella trichopoda AMTR_s00222t00273490 0 0.920 0.080 0

Arabidopsis thaliana AT1G03987.1 0 1.000 0.000 0

Arabidopsis thaliana AT5G03985.1 0 0.493 0.507 1

Corchorus capsularis CCACVL1_07549-1 0 0.960 0.040 0

Chondrus crispus CHC_970-1 0 0.960 0.040 0

Beta vulgaris subsp. vulgaris (sugar beet)  ENSRNA049434646-T1 0 0.910 0.090 0

Os-Nipponbare EPlORYSAT000373629 0 0.920 0.080 0

Daucus carota subsp. sativus (carrot) EPlT00049782094 0 0.980 0.020 0

Daucus carota subsp. sativus (carrot) EPlT00050810916 0 1.000 0.000 0

Daucus carota subsp. sativus (carrot) EPlT00050864937 0 0.432 0.568 1

Daucus carota subsp. sativus (carrot) EPlT00050875324 0 0.492 0.508 1

Galdieria sulphuraria (red algae) Gasu_nc0086-1 0 0.900 0.100 0

Musa acuminata subsp. malaccensis (wild 
Malaysian banana)

GSMUA_Achr10T27833_001 0 0.920 0.080 0

Helianthus annuus (common sunflower) HannXRQ_Chr12g0366031-1 0 1.000 0.000 0

Helianthus annuus (common sunflower) HannXRQ_Chr12g0367421-1 0 0.970 0.030 0

Medicago truncatula (barrel medic) MTR_4g025680 0 0.958 0.042 0

Malus domestica (apple) ncRNA:MD06G0075000 0 1.000 0.000 0

Malus domestica (apple) ncRNA:MD06G0107900 0 0.929 0.071 0

Theobroma cacao (cacao) Tc01v2_t005220.1 0 0.980 0.020 0

(Contd. .......)
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In case of DeepLNC, DNN out-performed the machine 
learning models like RF, SVM, ANN but in the present 
study, we found that performance of DNN was next to RF 
with a negligible difference in performance. The reason 
could be that ncRNA data considered in our investigation 
has different types of ncRNAs with varying lengths and 
features. The present study also found that there remains 
a room for improvement in performance of deep learning 
models by increasing the training instances, different deep 
learning architecture and features. Form the present study, 
it is observed that for the classification of coding and non-
coding RNAs of plants, RF can be used with highest accuracy 
followed by DNN, ANN, SVM classifiers.
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