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Abstract

Intron Polymorphism (IP) markers were used to unravel the genetic variation and relationship among 26 genotypes representing six
cultivated Brassica species described in the classical U triangle. One hundred and twenty-five Arabidopsis thaliana-derived IP markers
were assayed and 90 to 100% cross-transferability was observed in the six Brassica species suggesting that IP markers were highly
conserved during the evolution of different Brassica species. The number of alleles observed in species at each locus ranged from one to
ten with an average of 2.89 alleles per primer pair and there was no consensus between the number of alleles amplified in diploid and
tetraploid species. The size range of amplified alleles was 120-1250bp, which reflects enormous deletions/insertions in different alleles. In
B.juncea, 100% cross-transferability had been obtained and 121 IP markers resulted in polymorphic amplicons with PIC value of 0.04 to
0.48.The dendrogram divided all the 26 genotypes into two groups composed of B. napus/B. rapa/B. oleracea and B. carinata/B. nigra/B.
juncea. A-genome present in B. juncea and B. napus/B. rapa seems distinct from each other and hence provides a great opportunity for
generating diversity through resynthesizing amphidiploids from different available sources of Agenome.The A and B genomes are more
similar in comparison to C genome in tetra-diploid species.The evolutionary relationship established between various Brassica species
would support in formulating suitable breeding approaches for widening the genetic base of Brassica amphidiploids by exploiting the
genetic diversity found in diploid progenitor gene pools.
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Introduction

Brassica species, commonly called rapeseed-mustard,
are the third most important oilseed crops of the world
after soybean and palm. Canada, China, India, Japan,
and Germany are the major rapeseed-mustard growing
countries. Brassica is the second most important oilseed
crop in India, next to soybean. Brassicas are widely studied
model crops in plant taxonomy, evolutionary biology,

2014) and studying the history of origin, and evolutionary
relationship among different Brassica species is a basic

Division of Genetics, 'Division of Seed Science and Technology,
ICAR-Indian Agricultural Research Institute, New Delhi 110 012,
India; 2ICAR-Indian Agricultural Research Institute, Regional
Station, Wellington 643 231, Tamil Nadu, India; *Indian Council of
Agricultural Research, New Delhi 110 001, India

biotechnology, modern genomics etc. Brassicas have
undergone an intriguing biological journey through the
evolutionary history of crop plants spread over millions of
years. The present-day cultivated oilseed Brassicas consists
of three diploid species viz. B. rapa (AA), B. nigra (BB), B.
oleracea (CC), and three amphidiploid species viz.,B. juncea
(AABB), B. carinata (BBCC), and B. napus (AACC). The classical
U’s triangle explains the relationship between the six major
cultivated Brassica species. Nagaharu and Nagaharu (1935)
deduced that three basic diploid Brassica species were
probably the parents of subsequent amphidiploid ones. It
is also interesting to note that the diploid species of Brassica
are themselves mesopolyploid (Wang et al. 2011; Liu et al.
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requirement that, in turn, have wider implication in modern
genomics and other branches of research.

Polyploidy is one of the major factors contributing
to the genomic structure and evolution in Brassica spp.
Among the cultivated Brassicas, it has been revealed that
diversity is higher in diploid species especially in B. rapa and
B. oleracea, as compared to the polyploid species (Thakur
et al. 2018). These diploid species are easily crossable with
their amphidiploid species (Nikzad et al. 2020). This is the
reason for the great genetic diversity present within Brassica
species and most importantly, this offers greater advantages
for the introgression of useful traits between these
species. It has been found that the genetic material and its
arrangement are highly conserved among closely related
species. The genomic studies showed that Brassica species
and A. thaliana have originated from a common ancestor
and then diverged, 12.5-20.4 million years ago (Koo et al.
2011). Comparative genetic and physical mapping between
A. thaliana and Brassica species revealed the conserved
sequences and the co-linearity of genes. However, the
variation in the gene content might have resulted from their
diversion through insertion, deletion, and chromosomal
rearrangements (Cheung et al. 2009; Lysak et al. 2005).

Among Brassica species, a complete genome has been
sequenced for B. oleracea and B. rapa. However, very little
genomic information is available for other members of
the Brassicaceae family, particularly of B. juncea (AABB), B.
carinata (BBCC) and B. nigra (BB). The plant genomes have
genes with large introns. The alignment of spliced transcripts
to the genomes has revealed a large diversity in the intron
size. Despite being of diverse lengths, introns have been
a major resource for molecular-marker development in
several crop species (Poczai et al. 2011; Zhao et al. 2009)
and have been recently leveraged to develop marker
resources viz., Intron-spanning markers (ISMs) for legumes.
There are several advantages of using Intron Polymorphic
(IP) markers as they are co-dominant and multi-allelic in
(Badoni et al. 2016; Panjabi et al. 2008), offer less expensive
PCR-based assay, high resolvability, scorability, and
reproducibility which make them an excellent marker
system for determining phylogenetic relationships among
closely related taxa. Sequence homology is found among
the IP loci flanking regions of related species (Koo et al.
2011). A large number of IP markers have been developed
from well-studied Arabidopsis and many of these markers
have been shown to be applicable within and between the
Brassica species (Panjabi et al. 2008, Sharma et al. 2016).
This study used IP markers to unravel genetic variations in
three diploids (B. rapa, B. nigra and B. oleracea) and three
amphidiploid Brassica species. We evaluated the variation in
the patterns of Arabidopsis-derived IP markers (Panjabi et al.
2008), amplification in terms of their cross-transferability,
and allelic variation across Brassica species. This work will

demonstrate the feasibility of IP markers in resolving the
phylogenetic relationships of Brassica species and estimate
the genetic diversity present in B. juncea, a very important
edible oil yielding species in India.

Materials and methods

Plant materials

Two genotypes of each of the five Brassica species viz. B.
carinata (BBCC), B. napus (AACC), B. nigra (BB), B. rapa (AA),
B. oleracea (CC), and sixteen genotypes of B. juncea (AABB),
cultivated mainly for oil were used in the present study
for relationship and genetic diversity studies (Table 1). The
B.juncea genotypes used in the present study were diverse
for morphological, oil, and meal quality traits. Leaf samples
from all the twenty-six genotypes were harvested and
stored at 80°Cin a deep freezer.

Genomic DNA isolation, purification, and quantification

Total genomic-DNA from young leaves was extracted and
purified using standard CTAB method (Doyle and Doyle
1990). The quality and quantity of the extracted DNA were
evaluated by determining the A260/A280 absorbance ratio
by spectrophotometer (UV-Visible ElicoSpectrophotometer).
DNA concentration and purity were also estimated
using0.8% agarose gel electrophoresis and by comparing
the known concentration of A-DNA with the unknown
samples. A portion of DNA was diluted in molecular grade
water to a concentration of 10ng/ul and stored at -20°C.

Intron Polymorphism (IP) markers and PCR analysis

The sequence of IP primers used in the present study are
listed in Supplementary Table S1(Panjabi et al. 2008). PCR was
carried outin a 10 pL reaction cocktail with 25 ng of genomic
DNA, 1X PCR buffer, 0.1 mM of each dNTP, 1U Tagpolymerase
(Vivantis), and 10 pmol each of forward and reverse primer.
Conditions for PCR amplification were as follows: 94°C for 4
minutes, then 40 cycles each at 94°C for 30 sec, 55°C for 30
sec and 72°C for 1 minute, followed by a final extension at
72°C for 5 minutes.

PCR fragment separation, visualization and, data analysis
Amplified DNA bands of all the 26 samples per primer were
separated in a 4% high-resolution agarose gel (Amresco
SFR™) containing 0.01% ethidium bromide, prepared in 1X
TAE (40 mM Tris, 20 mM acetic acid, and T mM EDTA) using
100bp DNA ladder (G-biosciences) as a standard reference
(Fig. 1). The amplified fragments of equal length had been
considered as amplified from homologous loci. The numbers
of bands were also considered as the number of paralogs
of these genes. The total number of alleles identified in all
the Brassica species under study was determined for each
IP marker. For each IP marker, the total number of bands
obtained in an individual genotype was considered as
total loci and individual alleles scored of each locus/band.
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Table 1. A list of genotypes used in the study

Species Genotypes Pedigree/Collection Genotypic characteristics
Brassica juncea PDZM-31 (PDZ-1) LES 1-27 x NUDHYJ-3 Double zero variety
RLC-3 JM06003 x JM06020 Double zero variety
HEERA ZYR-4x BJ 1058 East European double zero germplasm line
PM-30 Bio-902xZEM-1 Brown seeded, single zero variety
PUSA KARISHMA PusaBaranixZem- 1 Yellow seeded, single zero variety
BIO-YSR Clipper/BH75/BK0019 White rust resistance
RE-8 East European germplasm East European germplasm line
PUSA BOLD Varuna x BIC-1780 Full season variety (>135 days)
RH749 RH 781 x RH 9617 Full season variety (>135 days)
PM-25 SEJ-8 x Pusa Jagannath Short duration variety (<110 days)
PM-28 SEJ-8 x Pusa Jagannath Short duration variety (<110 days)
VARUNA Selection from Varanasi local Full season variety (>135 days)
PUSA JAGANATH Multi-cross between Varuna/inter- Full season variety (>135 days)
cross derivatives/Synthetic Brassica
juncea
NRCHB-101 BL-4 x Pusa Bold Short duration variety (<110 days)
EC-766602 Landrace Early and dwarf genotype
RC-275( LAYAPATA) Indigenous collection High glucosinolates, used for salad purpose
Brassica napus GSL-1 (NECN 13x Tribute) x NECN 13 Canola type
GSL-5 (NECN 13x Tribute) x NECN 13 Canola type

Brassica carinata  NPC-9 (Pusa Aditya)

IGC -01 (PusaSwarnim)

Derived from the cross Carinata early

mutant x HC 2
HC 4 x Early mutant

Drought tolerant variety, suitable for rainfed
conditions

Drought tolerant, white rust-resistant variety

Brassica rapa RAPA-1 TL-15 An early maturing toria variety
RAPA-2 IC-332734

Brassica nigra NIGRA -1 1C-281862 Tall plant type
NIGRA -2 1C-393266 Tall plant type

Brassica oleracea  Brassica oleracea var. PUSA MEGHNA Early maturing cauliflower variety susceptible to
botrytis black rot and downy mildew

Brassica oleracea var.
capitata

GOLDEN ACRE: A single plant
selection from the German cultivar
‘Ditmarscher’

Early variety of cabbage

7 8 91011 1213 14 1516 17 18 19 20 2

. L
Sl T'.

Fig. 1. At5g24314,L.Ladder, 1.PDZM31, 2.RLC-3, 3.Heera, 4.PM-30, 5.Pusa Karishma, 6.Bio-YSR, 7.RE-8, 8.Pusa Bold, 9.RH749, 10.PM-25,
11.PM-28, 12.Varuna, 13.Pusa Jagannath, 14.NRCHB-101, 15.EC-766602, 16.RC-275, 17.GSL-1, 18.GSL-5, 19.NPC-09, 20.IGC-01,
21.Rapa-1, 22.Rapa-2, 23.Nigra-1, 24.Nigra-2, 25.Pusa Meghna and 26.Golden Acre

The presence or absence of bands for each allele/locus
were assigned as 1/0. Further, the data scored, based on
the presence or absence of bands, creating a binary data

matrix of 0 and 1 for each marker system, were evaluated
using the MEGA 5.2 software (http:www.megasoftware.
net/). The data matrices were used to estimate genetic
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resemblance based on Jaccard’s similarity coefficient and
a dendrogram/PCA showing relationships along with 26
genotypes was created using UPGMA method (Rohlf 2000).
The polymorphic information content (PIC) value of each
IP marker was estimated (Botstein et al. 1980) using the
formula; PIC = 1- Z(Pi)?, where Pi is the frequency of the it
allele of each IP marker.

The genotypic data of B. juncea were also analyzed using
the model-based STRUCTURE v.2.3.4 software (Pritchard
et al. 2000) to calculate the most probable number of
clusters (K value). The K value was estimated by running an
admixture and allied frequency model with K=1 to 10 (10
replication per K value); the burn-in time of each run and
MCMC (the Monte Carlo Markov Chain) lengths were both
setto 100,000. The online software STRUCTURE HARVESTER
was used to determine the optimal number of K values (Earl
and Vonholdt 2012). This program follows the AK method
of Evanno et al. (2005).

Results

Cross transferability of IP markers among Brassica
species

A subset of 125 IP markers selected from an earlier reported
set of 1180 IP markers (Panjabi et al. 2008), developed from
the intronic sequences of Arabidopsis genes, was used to
study the cross-transferability and relationship among U
triangle’s Brassica species. The cross transferability of IP
markers was found to be 100 percent (maximum) in B. juncea
and minimum in B. rapa (92.8%) across the cultivated Brassica
species used in this study (Fig. 2). The average percentage
of cross-amplification of IP primers across the six species
was found to be 97.38% in the present investigation. The
number of loci amplified by each IP marker ranged from 1

——Total no. of IP alleles

Percent cross-transferability
PDZ-1
GOLDENACRE 450~ RLC3

P.MEGHNA \a00 HEERA
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IGC-01 PM-30
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/ RH749

GSL-1 RE-8
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NIGRA-2 P.BOLD
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RAPA-1 PM-28

RC-275 | VARUNA
EC-766602 ~ PJAGANATH
NRCHB-101

Fig. 2. Number of cross-transferable Arabidopsis-derived IP
markers in different genotypes of Brassicaceae.

to 10 with an average of 2.78 loci per primer, being highest
in B. juncea cv Pusa Karishma (3.26 per marker) and lowest
in B. oleracea var. botrytis cv. Pusa Meghna (1.49 per marker).
The size of amplified loci ranged from 120 to1250bp,
indicating enormous deletions/insertions in different
loci (Supplementary Table S2). No consensus was found
between the number of loci amplified in diploid and in the
tetraploid Brassica species. Interestingly, four IP markers
(At1g65840, At2g18410, At4g26240, and At5g15930) were
found to be monomorphic, both in diploid as well as in
tetraploid species. However, only one allele was amplified
in diploid species, whereas two loci were amplified in the
tetraploid species. The IP marker ‘At4g09760’ of Protein
kinase superfamily protein gene did not amplify any
locus in the diploid progenitors. However, two loci were
amplified in the tetraploid species viz. B. juncea and B.
napus, the exception being B. carinata. Another set of six
IP markers (At1g72420, At2g30130, At3g51100, At4g09760,
At5g15930, and At5g52920) amplified in B. juncea (AABB)
but did not amplify in B. rapa (AA), indicating changes at
a genomic level during evolution.Interestingly, IP marker
‘At2938880’ designed for ‘Nuclear factor Y’ genes, amplified
the maximum number of loci in all the tetraploid species
(e.g.,15 alleles in B. juncea) while it amplified eight loci
in the diploid B. rapa and B. nigra and only two loci in
B. oleracea.

In-silico analysis of IP markers

A subset of about 20 IP markers was selected for in-silico
analyses using NCBI Gene Bank (https://www.ncbi.nlm.nih.
gov/) and Brassicaceae Database BRAD (http://brassicadb.
cn) to assess the number of alleles present in the genome
(Supplementary Table S3). These twenty IP primer sequences
were blasted against the genomes of the diploid species and
scored for the bands less than 5kb, taking into account both
forward and reverse primer sequences. It was interesting to
observe that there was more or less consensus between the
numbers and the size of the amplified alleles and in-silico
generated alleles in B. oleracea and B. rapa however, no
consensus was observed for B. nigra. More number of alleles
were amplified in PCR for B. nigra, as compared to in-silico
identified alleles. Another interesting observation during
the in-silico analysis was that many alleles having the same
size,were found to be present two or three times, either
on the same chromosome or on different chromosomes.
At1910840 amplified three alleles in PCR for all the
genotypes of all the species. In-silico analysis also found the
three alleles in diploid species, but two alleles of size 790bp
and 661bp were found to be present in duplication at two
positions on chromosome A9 and A8 respectively in B. rapa.
Similarly, the same IP marker revealed two alleles of 695bp
and 793bp at B3 and B2 in B. nigra and only 743bp at C8 in
B. oleracea. Most of the IP markers showed a similar type of
duplication in the genome in all the species.
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Relationship among species
IP markers were used to provide baseline evidence to clarify
the possible origins of various diploid and amphidiploid
Brassica species and to decipher the possible relationship.
Molecular-genetic relationships among the Brassica
species were analyzed through principal coordinate
analysis (PCoA) based on a pair-wise distance matrix across
all genotypes. All the genotypes were clustered in their
respective species group. The distance between different
clusters was variable (Fig. 3). The B. oleracea (CC) showed
the maximum distance from B. juncea (AABB) genotypes.
Among the diploid species, B. rapa (AA) and B. olercea (CC)
were more similar (0.196) to each other, while B. nigra (0.163)
was more dissimilar. The B. nigra (BB) was found almost atan
equal distance from both the diploid species B. rapa (AA) and
B.olercea (CC), meaning thereby that the distance between
AA and CC-genomes is shorter, and though the distance
between AA-BB and CC-BB is almost equal, it was more
than the distance between AA-CC genomes. Among the
tetraploids, B. juncea (AABB) was found closer to B. carinata
(BBCC) than B. napus (AACC). The similarity between the
progenitor and tatraploid was varied. B. juncea was found
to be equidistant from B. rapa (0.347) and B. nigra (0.366),
while B. carinata was found more closer to B. nigra (0.375)
than B. oleracea (0.212). Similarly, B. napus was found more
closer to B. rapa (0.380) than B. oleracea (0.225). The A and
B-genome are more similar in comparison to C-genome in
tetra-diploid species. The interspecies distance was found
much higher between diploid species (0.162) as compared
to tetraploid species (~0.447).

The intra-species distance was highest in B. oleracea
followed by B. rapa (SupplementaryTable S4) indicating
available variability within these species (Fig. 4). The B. rapa
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Fig.3.Dendrogram of 26 genotypes depicting the genetic
relationship among different species of Brassicaceae based
on allelic data of IP markers

and B. oleracea genotypes used in the present study are also
highly diverged morphologically. The least intra-species
distance was observed in B. carinata genotypes.

Diversity in B. juncea
The hundred percent cross-transferability had been
obtained for B. juncea, where 125 IP markers showed
successful amplification (Supplementary Table S5). The 125
IP markers amplified a total of 581 alleles, ranging from 2
(At1g19240) to 15 (At2g38880) alleles per marker (mean,
4.65; Supplementary Table S2). The average percentage of
cross-amplification of IP primers was 98.31% with an average
3.07 loci per primer. The genetic similarity was ranged from
0.524 t0 0.903. The genetic similarity coefficient was higher
between PM-25 and PM-28 (0.903), indicating a close genetic
relationship and a small genetic difference between them,
while the genetic similarity coefficient between Varuna
and Heera (0.524) was lower (Supplementary Table S4). PIC
value ranged from 0.04 (At5g16210) to 0.48 (At4g01897) with
an average of 0.22 and heterozygosity ranged from 0.06
(At1g18340) to 0.91 (At4g09760) with an average of 0.44.The
diversity ranged from 0.08 to 0.32 with an average of 0.22.
The STRUCTURE software analyzed the population
structure and genetic relationship among B. juncea
genotypes. The K-value was used to estimate the number
of clusters of the genotypes based on the genotypic data.
The K-value was plotted against delta K, which showed a
sharp peak at K=2 (Supplementary Table S6). The estimated
linkage probability revealed the optimum at two sub-
populations (pop1 and pop2) (Fig. 5). The grouping of B.
juncea genotypes into two major groups by STRUCTURE was
consistent with the PCA results. Population 1 consisted of all
the conventional genotypes while population 2 had all the
quality genotypes except RE-8. Among the quality (double
zero/canola varieties) genotypes, Heera and EC-766602 were
more diverse, while RLC-3 and Heera were found in the same

Orears

O HEERA

Dim-2 015

Fig. 4. 2D plots of 26 genotypes depicting the genetic relationship
among different species of Brassicaceae based on allelic
data of IP markers
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Fig. 5. Structural analysis of 16 genotypes of B. juncea using IP
marker at K=2. Each genotype is indicated by vertical bars.The
color subsection (within vertical bars) shows the membership
coefficient of the genotypes. The numbers 1-16 represent the
same order of the genotype given in Table 1

clade. Among the conventional genotypes, Pusa Jagannath
and RH-749 (full season varieties with duration >135 days)
were in the same clade. Similarly, PM-25 and PM-28, the
popular short duration (<110 days) B. juncea varieties settled
in the same clade (Fig.3). Out of 16 genotypes of B. juncea,
Bio-YSR and PM-30 genotypes had the maximum amount
of admixture as shown in structure analysis.

Discussion

With the advancement of whole-genome sequencing
techniques, the Intron-spanning markers of annotated genes
have been developed successfully and effectively deployed
in genotyping crop plants for assessing genetic relationships
and association mapping (Badoni et al. 2016; Poczai et al.
2011; Zhao et al. 2009). Panjabi et al. (2008) developed 1180
IP markers from spanning intronic sequences of Arabidopsis
genes that showed strong nucleotide conservation between
Arabidopsis and the corresponding EST or Genome Survey
Sequences (GSS) of any Brassica species. We have selected
polymorphic 125 Arabidopsis-derived IP markers from
the study of Panjabi et al. (2008); mostly located on the
A and B-genomes (Supplementary Table S1). The cross
transferability of IP markers was found to be 100 percent
across the cultivated Brassica species used in this study
(Fig.2). The present findings indicate that these IP sites
were previously present or conserved in all the Brassica
genotypes, further elucidating genome similarity and
close relationship among these species. The genes where
the IP markers were located involve a broad spectrum of
molecular functions including transmembrane protein,
homeodomain-like superfamily protein, ribosomal protein,
protein precursors, isozyme, proteases, kinase, and so on
(Rout et al.2018). Therefore, the IP markers could well reflect
the functional and structural genetic diversity between
different Brassica species.

In recent years, the genomes of Brassica species have
been sequenced and assembled (Zhang et al. 2018; Sun
et al. 2019; Paritosh et al. 2021). During the evolution of
Brassica species, the genomes underwent whole-genome
triplication followed by a substantial genome reshuffling
(Lysak et al. 2005). This genome triplication made genomes

assembly more complicated. Hence, genome assembly
is more accurate for the diploid species than the other
tetraploid species. It was observed that there is more or less
consensus between the number and size of the amplified
alleles in PCR and in-silico generated alleles in the case of B.
oleracea and B. rapa. However, no consensus was found for
B. nigra. This could be due to the limited information for
the genome assembly of B. nigra unlike B. oleracea and B.
rapa. It was also observed during the in-silico analysis that
many alleles with the same size were present two or three
times, either on the same chromosome or on a different
chromosome. The Brassica sequence contigs contain
numerous examples of tandem arrays (Town et al. 2006).

The possible relationship among the various diploid
and amphidiploid Brassica species was studied by using IP
markers. Twenty-six genotypes taken in this study, which
belong to six different Brassica species, were clustered
into six main groups (clades). The diploid species were
found to be almost at equal distances from each other. The
genotypes of tetraploid species B. juncea (AABB) appear
closer to B. carinata (BBCC) than B. napus (AACC) (Fig. 4).
Therefore, this result suggested that B-genome might be
less diverged in the studied genotypes when compared to A
and C-genomes. It demonstrates that the A and C-genomes
of oilseed Brassica species have undergone more genomic
changes than B-genome after amphidiploidization and
extensive cultivation. Grouping of B. juncea (AABB) and
B. napus (AACC) under two separate groups in our study
indicates inherent diversity between the A-genome of both
species. A study reported that the A-genome of B. juncea
and B. napus each had an independent origins (Takune et al.
2007) and this information may shed light on the unusual
features of divergence in Brassica. Thus, introgression of
individual A-genome types may be carried out to synthesize
Brassica amphidiploids to achieve more diversity for
breeding objectives.

The intra-species distance was highest in diploid species
than tetraploid (Supplementary Table S5), indicating
available variability within these species. The least intra-
species distance was observed in B. carinata genotypes.
Due to their global cultivation, B. rapa and B. oleracea have
accumulated much more diversity. The B.rapaand B. oleracea
accessions used in the present study are morphologically
highly diverged. Rapa-1(Toria) genotype is bunching type
and dwarf, on the other hand, Rapa-2 genotype is tall with
bold seeds. Similarly, B. oleracea genotypes Pusa Meghna
is cauliflower type and Golden Acre is cabbage type. That
could be the reason for high genetic diversity despite the
small sample size observed in B. rapa and B. oleracea when
compared to other Brassica species. B. carinata cultivation is
mostly restricted to a limited area of Africa and South Asia
hence limited genetic variation exists compared to other U
triangle’s species (Khedikar et al. 2020; Seepaul et al. 2021).
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Inter-species distances among these species elucidate their
contribution to the evolutionary process.

The inter-species distance was found to be much
higher between diploid species (>0.8) as compared to
tetraploid species (~0.58). The B. rapa (AA) and B. nigra
(BB) have very little genome similarity (0.17) because these
diploid species originated and were cultivated in different
regions. The cultivated B. rapa have originated in Europe
and migrated to East and Central Asia (Arias and Pires
2012) and B. nigra originated in the Middle East (Amer et al.
2019). Genomic studies also revealed that B. rapa and B.
nigra evolved from different lineages (Warwick and Black
1991; Pradhan et al. 1992). Among amphidiploid species, B.
juncea and B. carinata were closer than the B. napus. It has
been conclusively established that B. nigra contributed the
cytoplasm to B. carinata and B. juncea although B. juncea
has originated several times in independent hybridization
events involving B. rapa as a cytoplasmic donor also, while
B. napus has the B. oleracea cytoplasm only (Kaur et al.2014).
The comparative genomic studies have also revealed the
closeness of B-genome of B. juncea with B. carinata than
the C-genome of B. napus and B. carinata (Song et al. 2021).
It was quite interesting to note that when comparing the
amphidiploids with their progenitors, B. juncea and B.
napus are closer to diploid progenitors B. rapa than B. nigra
and B. oleracea, respectively. It indicates the possibility of
exchanging genetic material is more frequent from B. rapa
to amphidiploids than other progenitor (Kaur et al. 2014). It
is similar to studying genomic variability using SSR markers
(Wang et al. 2011). The study also reported that B. napus had
almost equal genetic distance with its ancestors B. oleracea
(CC,0.551) and B. rapa (AA, 0.568). This could be due to the
extensive breeding programs involving both (AA and CC)
genomes frequently to improve the B. napus. In the present
study, the B. napus genotypes grouped with B. rapa into
rapa clade, whereas B. nigra and B. carinata were placed
into nigra clade. Liu and Wang (2006) reported that in B.
napus A-genome was more conserved while C-genome has
been altered; and similarly, in B. carinata, B-genome was
intact and C-genome was drastically modified. The highest
interspecies distance between B. nigra and B. napus in our
nuclear genome-based study is in conformity with the
findings of plastid genome-based grouping of these two
species in different clades by Arias and Pires (2012).

All the 125 IP markers showed successful amplification
in six Brassica species and a 100% cross-transferability
was obtained for B. juncea (Supplementary Table S5) and
121(97%) were found polymorphic. Polymorphic information
content (PIC) is considered as one of the important features
that could be used to assess the differentiation ability of
the molecular markers (Botstein et al. 1980). The PIC value
ranged from 0.04 (At2g43790) to 0.48 (At4g31720) with
an average of 0.22 and heterozygosity ranged from 0.06

(At1g19240) to 0.91 (At5g14670) with an average of 0.44.The
diversity ranged from 0.08 to 0.32 with an average of 0.22.

In STRUCTURE analysis, Delta K reached a maximum
value at K=2, suggesting that the B. juncea genotypes would
be divided into two subgroups. The sub-population-1 is
composed of all the Canola quality genotypes and exotic
germplasm, while the sub-population 2 consists of the
conventional indigenous genotypes. The analysis performed
using STRUCTURE, UPGMA and PCA yielded similar results,
clustering B. juncea genotypes into 2 sub-populations. The
quality genotypes (erucic acid <2% and glucosinolates <
30ppm) are derived from the East European germplasm and
were grouped together. Out of 16 genotypes, Bio-YSR and
PM-30 genotypes had the maximum amount of admixture.
These two genotypes were developed as intermediate (20-
30%) and low erucic acid (<2%) genotypes by crossing the
Indian conventional genotypes with Canola quality East
European genotype. The possible explanation for this may
be the cross-hybridization or gene flow through conscious
breeding efforts made by humans for crop improvement
programs (Schilling et al. 2018).

Among the B. juncea genotypes used in this study, Heera
and EC-766602 were more diverse due to their distinct
geographical origin as EC-766602 is an East European
genotype while Heera is an indigenous genotype. Genetic
divergence among the genotypes may arise due to
geographical separation or genetic barriers to crossability
(Tiwari et al. 2022). The conventional varieties (erucic
acid >2% and glucosinolates >30ppm) of Indian mustard
developed by the different Indian universities and crop
research institutes had narrow genetic diversity (<20%)
and thereby all grouped together. A similar kind of narrow
diversity among Indian mustard cultivars has been reported
in the past (Singh et al. 2014; Sharma et al. 2020) which may
be due to the use of common parentage in their pedigree
(Chauhan et al. 2011).

The genotypes of different subgroups may carry
diverse genes for different agronomical traits. Strategic
use of diverse genotypes in the breeding program would
allow a systematic expansion of these gene complexes to
improve existing Brassica germplasm in terms of improved
yield, more resistance/tolerance to major biotic and abiotic
stresses, which are presently limiting the productivity of
Indian rapeseed mustard cultivars.
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Supplementary Table S1. Primer Sequence (5'-3') used in this study for molecular characterization of Brassica genotypes

S.No. Marker Name Primer Sequence (5’-3')

Forward Reverse
1 At1g02870 TGCCAAGGAGTTCGAGC AAAGGAGCACTCTTTCCATCT
2 At1g03910 CTGAAGCCTATCGACGTCC TCATCCCGAAGCTCTTCC
3 At1g10840 GAGACCTTCATGAATTACCAGG CTTCAGTCTCCAGTTCGGTC
4 At1g18340 CTTCTCTCTTGTCAGGATCACTCTC AACATACTGTTCCGGGCCATCT
5 At1919240 GCGAAATCGGCAGCTTCTTCTT ACCCGTCTCTTAAGCGTATAACCCAC
6 At1923440 AGACTGCTGGGGAAGGTGCA ACAACGGAAATGAGCTTCGTTCA
7 At1g30540 GAGCCTATTCCGATCCTCG GGTCTGAGGGATGATTAACACC
8 At1g31812 ACGTCTAATCATCATGGGTTTGA GCTGAACATCCCAGGACGAC
9 At1g34270 GAGATGGAGCTTGGAAATGG GGGAAACCTTCTTCCATGAC
10 At1g35680 TGGCTGAACCGGAGACTAC TTTGTGCCGACAAGCAAC
11 At1g48440 CTGCTGCTTCCATCGTCG GCTCCAGGTCCTTGTTGTACTTG
12 At1g50240 CGGATTCCCAACCCAAGAG GCGTCAGTAAAGTCTAGCAGTGC
13 At1g57680 TGCTCAGATCTTCCCCGTT ATCCACGCATGCTCTCTACCA
14 At1g65440 GAGAGCCTGTTCATGSAGATCC CTTGGAGMAGCAGATAGTCATCTTC
15 At1g65840 GGGAACACTCCATCTTGTTTG GAATTCTCTTGAATGCATCTCC
16 At1g67060 CGGTTGCTTGCAAGCTTAC TTCATTTGCATTCACCTCCA
17 At1g67170 ACAGGAGTACCAGCAGTGCA CTCCTTGATAAGGGTATTGAGCTG
18 At1g67250 GGATCTCACCCACTCGAATC CGTGGTGGAAGTCTACCGG
19 At1g68310 GGTGGAACATTGTAGCATGG ACGTTTGGATTCTCTAGTGCAG
20 At1g70350 TTACAYAGYGTTACTGCTTCAGCYTT CGGAAACWAYTTTCTTGGAATCT
21 At1g71950 GGTCCACATCATCTACACCGAG GCTCGGCACAACTTGAATCAC
22 At1g72020 CAARGMTCATAGCTTCATCCG CTTCTTAGCTCCAGTCGAGTG
23 At1972420 GGAACATTGAAGAATGGATACCAC CGCATTCCACAGAAACCACT
24 At1g72710 GGATCATTCGGAGAGATCTATC ACTGAGGATGCTTAGTTTTCAC
25 At1g72890 AGAGTGGCCGTCCGATTCC CGACCAGCTTCGAGTCATC(T/A)TC
26 At1g75330 CCTCCTCCGTCACGTCCC GCYTCGGCCATGATTTGGC
27 At1976200 GCAAAGCAAGATGGTCCTGTAG CGCCATGATCTTCAAAGGTTC
28 At1g76540 GCTCGCGATCCYCACATC GGGAGAGTGAAAGCTCTGGC
29 At1g77550 GAATTATCGTCTTGCGGATG GAACCCAGTTCATCCATCAC
30 At1g78010 GGCAGTGTTGTTGACGAGGTAG CATTCTCAGCTTGCGTAAGGTC
31 At1g78380 CTGGGTTGATTTCATCGACAAG CCTGTCTCTTGTTCCTCACCC
32 At1g78560 GCTGGCTTTGTGTTGCAG CCTGGACAGCAACCAACC
33 At1g78810 GCATTCGCTTGCTATTCACAAG GCATTCTGCTGCATTTGTAACAC
34 At1g79040 TCATCGGTGACGTTGAAACC ACAAGAAGAGCTCCTCCGGC
35 At1979950 CTATCTGGAAGCATGTGGTACAGTC CGGAAAAATCGAGCAAGGTC
36 At2901640 GGGCAAACCGAGCAAAGG GGAAAAGATCATTCGCCTTTAG
37 At2g03870 GACAAGGGTGTTCAAGTTAAGCT AGTTCCATCAGTTGGTGACAC
38 At2g06510 GATCGGGTTAAGTCAGGACA ATGGTCTCCATGTTCAGCAC
39 At2g16860 GAATCCTTACCACGAGTGTGT TGGGGTTCTTGGTTATCCTC
40 At2g17420 GTACTACGAAGACGAGCGTGG TCCAAAGCGGCCATGCA
41 At2g18410 GCTCGCGCCAGCTCTCAC GGCATGGATGAATGTCTTAGCA
42 At2g18900 AAG(A/T)TTTGGG(A/C)GTCTGAACCA AGAGAAAGCAGCAGCAGTCA
43 At2g19260 ATATGCGGAAAGTGGCGTAG TCGTGTTTTGGCGTCTGA
44 At2g19450 GTGGCTCTGCATGTTCTACTGC GACGACAAGGAACTGCGATG
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S.No. Marker Name Primer Sequence (5'-3)
Forward Reverse

45 At2g20490 GACGAAGATGTATCTTCAGTGCT CCGCTTCTTCAACAAAACTCTCT
46 At2g23930 AGGTCAGCCTCCGGATCT TCAACAACAAGATTCATGAACTG
47 At2924765 TCAAGTTTCAGGTCTGGGATTTAG CCTGATGCTCGTTTGTCCAC
48 At2g30130 ATGGGCGGTCCCGGAT AGAATCTCGGCTTGAGCCACT
49 At2g30350 AACCCTAGATCCCGTCGG GGATGCTGCCAAGCCCA
50 At2g33040 CgCgAAgggAggCgTCTC TCACACTCTTCATgCggTTACgC
51 At2934860 CTCTTCGCAACCCTTCGC GCTGGAGATAAGCACACACATG
52 At2g35790 CGCCGTCTCTCTTCCTCC GATGCCCACGTTCTCTGG
53 At2g36930 GCGTAAACCAGAGACGGAGA GAGTTGTGAGTGTGGCGC
54 At2g38130 TGGAATCTGGCTGTGAAGAG TGAACCCGAGTCTCCCATATAG
55 At2g38880 CAggAATgCgTCTCTgAgTTCAT CTTCTCCTTCTggCACTTATCACT
56 At2g40765 GGCGCCATATGGGTCGT TGTCTTCTTAATCCAATCAAATGG
57 At2g43790 TgCTTCgTCACATggATCATgA gATCTgATggAgATCAgTgTCCATT
58 At2g44970 CCCACATTCCTTAAGCTCCAG CGGCTTCATTAAGAGCTGGT
59 At2g45790 gCAAgATATCTgAgCAgCTTggC CCAAggTgCAgCTTCAggCT
60 At2g46390 AGATGATCTACCGAAAGTGGAGT CACTTGTTTGATGAGACATTCTTCT
61 At3g01060 TCGGTCGACCCATGTCCGT TTGTCTTGGCGCCACCCATA
62 At3g02420 GGCTTCCTTCTGATTATCTCTCTG GGAGTATTCAAGAAGGGAGCGT
63 At3g02860 GTACAACGAATCAGACCAGCCT GAAGAATCCCTCTGGAAGAGGT
64 At3g08690 GGATCCTCCTTCTAACTGCAGC GATGGTAAGAGCAGGGCTCCA
65 At3909925 ATATGGATTGGTTCGGCTGC GGGAAGTAGACAGGCCAGTTGTA
66 At3g10572 TGCTCTATGTATGAAGAGGCAGAG CCACAACTTCCATGTACTCATCAA
67 At3912260 CACCATCATGGACATTTACAATCT CAGCTCTTCCATTCCCTTGAA
68 At3g13120 TCCAGAAACTCTCGATGAACCC GAGGCACCCAGTATGATCTAAGC
69 At3g15190 GCTTCTCTCAGAGCGTTTCTCAA GCCCATCGAGTGCTTCCAA
70 At3916760 AGTCAAGCACATTCTCATCAGGA CGTCACATTCTTCT(C/T)GTCGTG
71 At3g23980 CAAAGGGATCTTGATGCTTCA TCCATATCATCTTTTAGTTGGTTGAC
72 At3g24800 TTCTCTGCTGCGTTTGCCT GGAAAGTGAACGTAAGGGTCTCTAC
73 At3g51100 CAgCTTCAAgCAACACTTCATC AAgQTTCTTCATCACCCCTgC
74 At3g54130 CCGATCTCGACGGGAAGGAGCG GGGTCTATCTGCGCAGGCTCTGCA
75 At3g55430 GCTGGTGTCAGAGATGTTAAGG CAGGTCATAGGCTATGATGTTAAG
76 At3963420 AAGCACATGATCCTTGCGGAGC CTTCAAACCACCGGTCCCATCC
77 At4g01310 TCTCCTTCGCTTCTGCAGTCTT TTCTTGATCGCTTTTAGCCGTT
78 At4901897 AGTACGGAACAAGAATGGGAAGAGT GACCATAGAAGTGAGGGAAGCTATT
79 At4g05530 GCATCGACGCAAGGGAT GGATAAGATTGGGTCAGTAGATGG
80 At4g09760 CGATGTAGGAAGCTTCTTGTTCG GCTGATATGTTGGGATCACGA
81 At4g11790 CAATAGCCAGACTGGATCTTTTAGC CTTCATGAACCACAGTAATACCCTT
82 At4g15520 CTGCGTTTCTTCTCGGTAATGAG GTAACATTCAAAGAGGCAGTGCC
83 At4g15802 GTCCAAAATCTTCTCCAGCAGA CTCATTGATTCTGCCCTCCCAT
84 At4g16180 CATCACAGTGCTTTCCTTGACGTA AACCTCTAGTGCAGTTCCAGC
85 At4g17050 CGAATCCAACACTCTCTCCTTC GGAGGTAAACCTGAACTTGACATT
86 At4g20150 CAATGAGCGCCGTTACTTTG TCCATAACTAATCCCGATCTTCAT
87 At4920410 CTTCGGATCCTGACAAAATGATG GCATCTCTTGTCCTTTTGAAGC
88 At4921720 ATGATACCGCAGCAA TGGACG GAGTCACTATCGGCATCACATCC
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S.No. Marker Name Primer Sequence (5'-3)

Forward Reverse
89 At4g23860 GGCATCTGGTGTTTTCGAGGA TTGCCCGGGAGAAGCTTACA
920 At4g25140 CAAGTCTAGGCAGAT TGCTAAAGCT CAGCTTCATCCTTGCACTGTC
91 At4926240 CAGCAGTTCATGTCACCATGGGA AGCAAGCCATGATAGCGATCCA
92 At4926840 CACATCAATCTCAAGGTCAAGG ACAGATTGCCTGTCACAGTAAGC
93 At4927490 TGATGTATGACCTTATCACAGCTGT CAATCACGCATGATCTCTCCAA
94 At4g30790 AGCCAGTCTGAG CAGAGAGTTGG AGCAGTTCTCCAAATGCGCAC
95 At4g31130 GCCWGCGTCTGGGACTCCAAT CATCCCTGGAGGAAGAGTTYCCATC
96 At4g31720 CAATCTGGTGAGGCA AAGCATGA GCAACATCTGCAACAAACTTTTGTG
97 At5g14105 CTGGCTCGAAGAGGAATCTTCC GGGATGTCCTTCTTCGGAACC
98 At5g14670 GAAATCGTCACCACCATCCC CCAGATGTGGCACAAGTGC
99 At5g14920 CTGCTTCAAATGAGGA(G/A)TCCAA AGTCCCACATAAAGACACGCAA
100 At5g15280 ATGGCGTCGTTGCTTATCAG CTCTCTCCGAGCCAAACCTC
101 At5g15400 TGGTTAGTCATGAGTGGTGGGTT GGACGACGTTCCGATGCT
102 At5g15930 CCCCAATGGAAGGATTGTATC CTGTTTCATTTCTTCCAAACGC
103 At5g16090 TCGCTTCGAGATCCAAGT CTCCCATCACGGTCTCTATG
104 At5g16210 TTCGTCTAGCACAGGAGGATATT CGTTCATTGTTCTTCAAAGGC
105 At5916260 GCGCTACATGTTCAGTCCAGC GCAGCGTGGTTCACTGATCC
106 At5g16400 CCTCGACATGTACACTCAGTG GGAACCACTCTAATTCCTAGCTC
107 At5g17300 CgTTgACTACgAATGTTCAg CATCAQTCCATCTCTCTCTTTC
108 At5g20010 CTTCAAgCTCgTCATYgTTgg gCACACTggCCATggATg
109 At5922340 GCTCTGGTTAAGGGAGATTCTCG AAGCTAGTAAGCAATATCCGCTGC
110 At5922640 ATTGAGGAGTTTCTTCAGTGGGT GACATCCATTTCCAACCACTT
111 At5924314 CAGAGAGATGATAATGGACGCC CCACAAACGGAACTCTTTGC
112 At5926360 GCTTCTTGATGCTGGTGGA GGCAGATGACTGTGGGATG
113 At5927740 CTTgCCgTCTCATCTTATgCTg gCAACgAACTCCAACACTTTCAC
114 At5935360 ACCGTCAGAGTTTGTGAAACTG GAAGGTGCTTCTTCCAGCAAC
115 At5g37580 CATggCATATATCAggAgACTgAg gCCTCCATTgAgTTCCATCC
116 At5g40650 TggAACCCTgAgTCTTATCTTgg TCTCgACTgTCgCTTATC CAC
117 At5g40670 CTCAgCTgATTTTgAATTTCCg CATTTgCAgCCACAggTATCAT
118 At5g43150 AGAGTGGTGGAACACGATGG CTTCGTACTCGCAAGAACTCAC
119 At5g45610 GCGGTTTCAATGACGCG GATAATTTGAGGTGCGCCAGAT
120 At5g47040 GGGAGTAGCAGCTCGTGCTCT TCTTAAACTggCgTgACAgTgC
121 At5g49510 GAAGCAAGGAAGGGTACTGG CCAACCACAAACACACTGAGTC
122 At5952920 GAGACACTTGAATGTCCGAGG CATGCTACGGCATAGGTTAATG
123 At5g58730 CATTGTTAGGGAACCTCTTTGG CTGCTTCTTCCTTCTCTGTACCTC
124 At5g61500 GCGATAATCTCGTCTCCAAGTG GCTTCATAATCCTCTGCCACAG
125 At5963520 GGAACATCGTCTGCAATCG GTAGCCAATGGTCAACAGTATAGC
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Supplementary Table S3. Number of alleles found for each primer

S.No.  Primer In Silico In PCR
B.rapa B.nigra B.oleracea B.rapa B.nigra B.oleracea B.juncea B.napus B.carinata

1 At1g02870 1 0 1 2 1 1 3 3 3
2 At1g03910 1 0 1 3 2 2 3 1 2
3 At1g10840 2 3 2 3 3 1 4 3 4
4 At1g18340 1 1 2 1 2 2 2 1 1
5 At1919240 1 2 2 1 3 2 3 1 1
6 At1923440 2 3 3 3 3 4 4 2 3
7 At1930540 1 1 1 1 3 1 4 1 2
8 At1g31812 2 1 2 3 1 2 4 3 3
9 At1g34270 2 1 1 2 2 2 4 3 3
10 At1g35680 1 0 2 2 1 1 4 3 2
11 At1g48440 1 0 1 3 2 1 5 3 4
12 At1950240 1 1 2 2 2 2 5 3 3
13 At1g57680 1 2 2 3 4 3 5 4 6
14 At1g65440 0 0 1 1 3 2 3 2 3
15 At1965840 1 0 3 1 0 1 2 1 1
16 At1g67060 1 1 1 1 3 1 3 1 2
17 At1967170 1 3 1 4 4 2 3 2 3
18 At1g67250 1 0 0 2 4 2 6 3 6
19 At1g68310 2 2 2 3 4 2 5 2 5
20 At1g70350 1 0 2 1 0 2 2 0 1
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Supplementary Table S5. Per cent cross transferability and total number of alleles found in 26 Brassica genotypes for all the amplified primer sets

Genotypes Total no. alleles Number of amplified primers Per cent cross-transferability AVG/marker
PDZM-1 382 123 98.40 3.06
RLC-3 385 124 99.20 3.08
HEERA 379 124 99.20 3.03
PM-30 394 123 98.40 3.15
PKARISHMA 407 124 99.20 3.26
BIO-YSR 353 118 94.40 2.82
RE-8 369 122 97.60 2.95
PBOLD 392 123 98.40 3.14
RH749 397 125 100.00 3.18
PM-25 393 124 99.20 3.14
PM-28 395 125 100.00 3.16
VARUNA 360 123 98.40 2.88
PJAGANATH 386 125 100.00 3.09
NRCHB-101 386 123 98.40 3.09
EC-766602 386 120 96.00 3.09
RC-275 384 123 98.40 3.07
RAPA-1 247 119 95.20 1.98
RAPA-2 297 113 90.40 2.38
NIGRA-1 258 117 93.60 2.06
NIGRA-2 248 117 93.60 1.98
GSL-1 346 120 96.00 2.77
GSL-5 363 122 97.60 2.90
NPC-9 384 122 97.60 3.07
1GC-01 384 122 97.60 3.07
PMEGHNA 186 121 96.80 1.49
GOLDEN ACRE 188 123 98.40 1.50

Supplementary Table S6. The Evanno table output after running STRUCTURE HRVESTER

K Reps Mean LnP(K) StdevLnP(K) Ln’(K) |Ln"(K)| Delta K

1 3 -1705.87 2.909181 — — —

2 3 -1574.13 0.814453 131.7333 134.8333 165.5508
3 3 -1577.23 12.22307 -3.1 12.5 1.022657
4 3 -1592.83 9.096336 -15.6 13.26667 1.458463
5 3 -1595.17 22.52872 -2.33333 48.1 2.135052
6 3 -1645.6 12.5048 -50.4333 65.56667 5.24332
7 3 -1630.47 28.90023 15.13333 25.36667 0.877732
8 3 -1640.7 16.88579 -10.2333 24.7 1.462768
9 3 -1626.23 21.92951 14.46667 38.03333 1.734345
10 3 -1649.8 80.12871 -23.5667 — —




