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must increase by at least 1.6% per year from the
current level of 1% (GCARD 2012). However, change
in the climatic conditions with the unpredicted rainfall
hindered the crop yield (IPCC 2013). The rising in
average global temperature and inconsistent rainfall
due to climate change results into reoccurrence of
drought stress across the globe (Trenberth 2011; Hui-
Mean et al. 2018). The impact of drought stress on
wheat yield is experienced more in the reproductive
developmental stage and its impact increases to many
folds if drought is sustained for long time (Daryanto et
al. 2016; Fahad et al. 2017; Ding et al. 2018). The
physiological traits in wheat reported to be linked with
drought tolerance includes normalized difference
vegetation index (NDVI) (Lopes and Reynolds 2012;
Ramya et al. 2016; Condorelli et al. 2018), total
chlorophyll content (Kira et al. 2015; Paul et al. 2016),
canopy temperature (CT) (Mason and Singh 2014;
Deery et al. 2019) and carbon isotope discrimination
(Dixon et al. 2019; Shrestha et al. 2020). Indirect
selection of the ideal physiological traits that contribute
to yield are better than direct selection for higher yield
(Fischer et al. 2018).

It is more precedence if the selected
physiological trait has more heritability under a stress
environment than yield itself, that evidence have
greater possibility of triumph for the development of
stress tolerant variety. This implies that estimates of
yield attributing physiological traits impartial with grain
yield improves the efficiency of selection by reducing
the reliance on final grain yield. This allow a window of
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Introduction

Bread wheat (Triticum aestivum L. em Thell) is a major
cereal crop that provides staple food to more than 2.5
billion of world population, with a production of 107.18
million tons (13.99 % of global) in an average area of
30.55 million hectares (13.80 % of global) in India
(USDA 2020). By the year 2050 the global population
will increase to ~9 billion, for that huge population wheat
yield have to be increased by 60% (United Nations
2019). To address the challenge, the wheat production
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opportunity for the development of more successful
crosses in a breeding program by taking advantage of
additive gene action (Ataei et al. 2017; Dolferus et al.
2019).

Additive main effects and the multiplicative
interaction (AMMI) model helps to study the genotype
by environment interaction (GEI) (Gauch 1992). AMMI
and GGE (genotype main effect plus genotype x
environment interaction) biplot were best suited model
for the purpose of development and evaluation of
cultivars or genotypes which are stable across the
different environmental conditions (Yan 2002;
Farshadfar et al. 2011). In AMMI model, the analysis
of variance of genotype and environment combines
the main effect with principal components analysis
(PCA) of the GEI (Gauch and Zobel 1997). The AMMI
stability value (ASV) and the yield stability index (YSI)
derives from the AMMI model’s IPCA1 and IPCA2
(interaction principal components axes 1 and 2,
respectively) and mean yield across the environments
scores for each genotype incorporate into single
criterion (Purchase et al. 2000; Mkumbira et al. 2003).
These values commensurate with the stability
methods given by Eberhart and Russell (1966) and
Shukla (1972). To graphically analyze GEI, GGE biplot
is effective way to find identification of high-yielding,
stable genotypes, especially in multi-environment trials
(Butron et al. 2004; Samonte et al. 2005; Laffont et al.
2007; Ahmadi et al. 2012). The objective of this study
was to evaluate and characterize the recombinant
inbred lines (RILs) derived from parental cross of
Synthetic 46/HD2932 in different moisture regimes for
different physiological traits along with grain yield to
identify best genotypes with high and stable grain yield.

Materials and methods

Experimental design and materials

A set of 188 RILs developed from a cross between
Synthetic 46 and HD2932 were sown in α-lattice design
including parents under two sowing conditions, each
with two replications constituting ten blocks (each block
contains 19 test genotypes). Experiment was designed
and carried out at two location (i) experimental farm,
Division of Genetics, ICAR-Indian Agricultural
Research Institute (IARI), New Delhi and (ii) ICAR-
IARI, Regional station, Indore. Trials were conducted
in rabi 2017 at Delhi under irrigated condition (DIR17);
rainfed condition (DRF17), in rabi 2018, at Delhi under
irrigated condition (DIR18); rainfed condition (DRF18),
at Indore under irrigated condition (INDIR18); rainfed

condition (INDRF18).

Phenotyping

The physiological traits viz., total chlorophyll content,
stay green and CT were recorded at different growth
stages of plants of each RIL (genotypes) in each
application from middle row of the three lines in the
plot.

Total chlorophyll measurements were determined
using a portable SPAD-502 sensor Chlorophyll Meter
at two different stages viz., SPAD1 (heading stage)
and SPAD2 (grain filling stage). Computation were
made midway between the margin and midrib on one
side of leaf to minimize any effect of a discontinue
distribution of chlorophyll in the leaf (Li et al. 2012;
Abd El-Halim and Omae 2020). NDVI were recorded
with a portable spectroradiometer known as Green-
Seeker at six different growth stages of plant viz.,
NDVI1 (vegetative stage; Zadok’s 2-3), NDVI2 (booting
stage; Zadok’s 4), NDVI3 (heading stage; Zadok’s 5),
NDVI4 (grain filling stage; Zadok’s 6-7), NDVI5
(double-dough stage; Zadok’s 8) and NDVI6 (maturity
stage; Zadok’s 9) respectively. CT reading were
recorded at vegetative stage (CT1) and heading stage
(CT2) of the crop. CT measurements were taken up
with help of Infrared Thermometer (Reynold et al. 1998;
Ayeneh et al. 2002). The spikes per plot were harvested
and threshed at physiological maturity, grains
harvested were weighed and expressed as grain yield
per plot in grams (GY).

Statistical analysis

Analysis of variance (ANOVA) and best linear unbiased
predicted value (BLUP) for all the variable were
obtained by the software META-R (Multi Environment
Trial Analysis with R) version 6.0. BLUPs values taken
out of each six environments was used for analysis.
The obtained data were used to enumerate Pearson’s
correlation coefficients among the different
physiological traits and GY using the IBM SPSS
statistic version 20 software. To find out GEI effects
on grain yield, the recorded data for GY of all different
environments were put forward for AMMI and GGE
biplot analysis using software Gen Stat 14th edition
(VSN International, Ltd, Hemel Hempstead, UK) and
GEA-R Version 4.1 respectively.

AMMI model analysis helps to adjust the main
or additive effect of genotype and environment, and
its PCA inspect the residual interaction component
(Farshadfar et al. 2011; Adjebeng-Danquah et al. 2017).
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The AMMI model engage the sum of several
multiplicative terms rather than only single
multiplicative term in estimating the performance of
genotypes in different environments (Bernardo et al.
2010). AMMI analysis helps to determine stable
performance of the genotypes across different locations
using the PCA scores and ASV (Hagos et al. 2013).
The ASV is a quantitative stability value based on the
AMMI model’s IPCA1 and IPCA2 scores of each
genotype, and assign genotype in terms of rank
(Purchase et al. 2000).
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PCA is the ratio of sum of squares of

IPCA1 by IPCA2. More absolute value of IPCA means

greater adaptability of genotype for a certain
environment. However lower ASV value shows more
stability in different environments. Similarly, YSI was
calculated using the following formula: YSI = RASV +
RY, (Mkumbira et al. 2003). where RASV is the ranking
of the ASV and RY is the rank of the genotypes based
on yield across environments. Low value of YSI explain
the genotype with high mean yield and stability
(Olivera et al. 2014).

The GGE biplot is a best model, used to show
the graphically depiction of stable genotypes with high-
yield across the different environments and also
similarities/dissimilarities between environments by
evaluating it based on the discriminative ability and

representativeness of the GGE view, which is an
advantage over the AMMI biplot analysis (Yan and
Kang 2002; Yan et al. 2007; Aktas 2016).

Result and discussion

Correlations among traits

The relationship between two factors or variables is
well defined by the correlation coefficient. It shows
core concept of the relationship among various yield
related traits, that is beneficial for the plant breeder to
select the varieties having desired attributes (Ghafoor
et al. 2013). Pearson’s correlation coefficients for
different physiological traits with grain yield under
rainfed condition are given in Table 1. SPAD at
heading and milking stage gives significant positive
correlation with GY. Same relationship was earlier seen
by Yildirim et al. (2010); Barutcular et al. (2016); Abd
El-Halim and Omae (2020) who found positive
correlations between SPAD values and grain yield at
the heading and mid-milk grain development stage.
Environmental stress is associated with chlorophyll
loss and this loss in chlorophyll is regarded as a good
indicator in moisture stress condition (Hendry and Price
1993; Barutcular et al. 2016). The distinctive
relationship of SPAD value with GY shows the
relationship of changes of soil moisture with the
chlorophyll, and hence it may be used as tool to
determine grain yield in moisture deficit condition. The
strength of the relationship changed depending on the
location and phenological stage (Reynolds 1997).
SPAD-validation studies on materials with wide genetic
backgrounds are useful to improve selection efficiency

Table 1. Pearson’s correlation coeffiants among the different physiological traits and grain yield per plot at DRF is using
BLUPs value

GY SPAD1 SPAD2 CT1 CT2 NDVI1 NDVI2 NDVI3 NDVI4 NDVI5 NDVI6

GY 1 .268** .259** -0.093 -.144* -.279** -.306** -.270** -.222** -0.126 0.031

SPAD1 1 .871** 0.028 0.027 -.288** -.279** -.278** -.226** -.153* -0.024

SPAD2 1 0.024 0.024 -.274** -.259** -.233** -.143* -0.116 0.026

CT1 1 .818** -0.034 -0.016 -0.062 -0.032 -0.076 -0.087

CT2 1 -0.026 -0.001 -0.008 0.012 -0.039 -0.029

NDVI1 1 .807** .731** .610** .490** .214**

NDVI2 1 .911** .750** .608** .332**

NDVI3 1 .808** .638** .383**

NDVI4 1 .825** .550**

NDVI5 1 .781**

NDVI6 1
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in durum wheat breeding. Strong genotype ×
environment interactions in leaf chlorophyll contents
can result in lower selection accuracy in conventional
breeding programs. Recently, environmental conditions
were shown to affect the relationships between grain
yield and chlorophyll retention in populations of spring
and winter wheat (Bogard et al. 2011). Therefore, it is
necessary to analyze SPAD values of plants in
targeted environments to verify the relationship
between SPAD values and grain yield. If there is a
strong relationship between SPAD chlorophyll at a
particular stage and grain yield, then this may serve
as an indirect selection tool to differentiate high yielding
genotypes. For the SPAD and NDVI traits used in
present study, Liebisch et al. (2015) and Yousfi et al.
(2016) obtained similar correlation between SPAD and
NDVI in durum wheat and in maize found weak and
negative correlation respectively.

CT is described as a cheap and effectual
indicater to determine high yielding wheat varieties in
different moisture regimes (Blum et al. 1989: Olivares-
Villegas et al. 2007). Variation in CT among the wheat
genotypes is conceivable due to their genetic
differences, also supported by Reynolds et al. (1994).
A negative correlation was observed between CT2 and
GY; genotypes managing low CT had higher grain yield
per plot. Moisture stress on association with high
temperature stress at heading stage leads to reduction
in photosynthetic activity and hindered accumulation
of carbohydrates in grain (Sikder and Paul 2010).
Significant variation among genotypes for grain yield
and negative correlated with CT at different stages
was observed by many researchers (Lopes and
Reynolds 2010; Harikrishna et al. 2016; Manu et al.
2020) under variable growing conditions. Specifically,
CT at reproductive stage is meant to be the crucial
stage that affect the GY under drought conditions
(Pask et al. 2014). The reduction in CT will affect
transpiration (Reynolds et al. 2001) and plant water
status (Araus et al. 2003). CT at vegetative stage and
reproductive stage was found to be positively
associated with each other, and there is negative
significant correlation showed by traits SPAD, NDVI
and GY as reported by Harikrishna et al. (2016), Ramya
et al. (2016) and Manu et al. (2020).

NDVI was significantly negatively correlated with
SPAD and GY at different stages as shown in Table 2
(Kyratzis et al. 2017). Aparicio et al. (2002) reported
positive interactions between NDVI when analyzed at
different growth stages, genotypes and environments.
The ideal stages for measuring NDVI vary upon

genotypes and the environment (Marti et al. 2007).
Lobos et al. (2014) and Gizaw et al. (2016) reported
the positive association between the NDVI and GY
under different moisture stress and non-significant
correlations between grain yield and days to heading.
In our study, negative correlation between NDVI at
different stages with GY were observed. This may
probably occur due to confounding effects of
glaucousness and days to heading in the population.
The inherent low grain yield of the glaucous wheat
was reported in previous studies (Yao et al. 2004;
Yang, 2015; Zi et al. 2018). The present results were
supported by Kyratzis et al. (2017), who suggested
saturation of NDVI at drought is difficult to attain
(Montazeaud et al. 2016), and can be used by modifying
its calculation viz., degree of NDVI reduction after
anthesis (Hazratkulova et al. 2012) NDVI ratio before
and after anthesis, and cumulative NDVI after anthesis
(Li et al. 2011). Overall NDVI is useful tool to select
the genotype based on GY under different moisture
stress conditions.

AMMI, ASV and YSI analysis

Gollobs (1968) test for grain yield, AMMI lattice at six
different environments showed high significance
(p<0.01) for the mean squares of environment,
genotypes and GEI which explained 21.85, 31.16 and
46.97 per cent of variability respectively (Table 1).
Similar results have been also reported earlier by
several workers (Kaya et al. 2002; Mehari et al. 2015;
Harikrishna et al. 2016; Manu et al. 2020). The large

Table 2. AMMI analysis of variance for grain yield tested
at six environments

Source of df MS % varia- % varia-
variation biity bility

accumu-
lated

Environment 5 1016737** 21.85 21.85

Genotype 189 38346.99** 31.16 53.02

Interaction 945 11561.11** 46.97 100

IPC1 193 20756.76** 37.02 37.02

IPC2 191 12063.46** 21.29 58.32

IPC3 189 9913.406** 17.31 75.64

IPC4 187 7755.856** 13.40 89.04

IPC5 185 6403.824* 10.95 100

Residuals 1140 5092.752 0 0

** Significant at 0.01 probability

  * Significant at 0.05 probability
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variation explained by the genotype and GEI indicates
the diverse nature of the genotype in the population
and across the different environments. The grand mean
of GY in between environments varied from 306.8 gm/
plot to 463.4 gm/plot. At both locations in year 2018,
GY for rainfed is lower than irrigated condition (Table
3). whereas grand mean of GY for genotype varied
from 227.1 gm/plot (G34) to 567 gm/plot (HD2932).
Best ten genotypes in their respective environments
are given in Table 3.

The magnitude of sum of square obtained from
the GEI was 1.50 times higher than that of genotypes,
that shows the significant differences in genotypic
reaction across environments (Yan and Hunt 2002;
Mohammadi et al. 2009). In AMMI model the IPCA1
and IPCA2 scores were significant for the GEI and
considered to be the indicator of stability. ASV values
obtained from analysis depict the stable nature of
genotype, less value indicates more stable genotypes
and vice versa (Purchase et al. 2000). Among the
best 20 genotypes, two genotypes had low ASV values
G126 (0.42) and G144 (1.09) with grain yield of 468.6
gm/plot and 472.2 gm/plot respectively
(Supplementary Table S1). The best five genotypes
across all the environments with low ASV values are
G14 (0.22), G60 (0.26), G65 (0.28), G126 (0.42), G92
(0.43). The result was in accordance with  present
findings of Bavandpori et al. (2015) Melkamu et al.
(2015) and Manu et al. (2020), who assigned the ASV
values to each genotype to get grain yield stability of
bread wheat varieties. The YSI values assist to
combine both yield and stability into a single index, to
overcome the use of yield stability as the sole criterion
to select genotypes. Thus, genotypes with minimum
YSI value is beneficial, based on the YSI
(Supplementary Table S1), the best genotypes viz.,
G126, G144, G57, G127, G141, G14, G82, G105, G95,
G45, G120 and G104 were found to have high grain
yield performance. Thus, they can be selected to
advanced yield trials for development of wide-ranging

adaptable variety. Although genotypes G127, G120
and G105 have high ASV score and high yield but low
YSI, these can be recommended for particular
environments where they performed well. The
approaches were earlier utilized by Farshadfar et al.
(2011); Tekdal and Kendal (2018) to distinguish stable
genotypes in multi-environment trials of wheat crop.

GGE biplot analysis

The GGE biplot is used to identify the best performing
genotype of each environment and group of
environments to assess the stability of the genotypes.
The striking feature of GGE biplots is the ‘which-won-
where’ analysis, where GEI, specific genotype
adaptation and mega-environment differentiation
constitutionally represented as graphically based on
their coalition with the site score (Yan 2002; Yan and
Tinker 2006; Oral et al. 2018; Thungo et al. 2020).

The most responsive genotypes were at vertex
being assigned at the farthest distance from the origin
of biplot. Genotypes (best or poor performance) in one
or all environments falling within the sectors were
considered responsive (Yan and Tinker 2006). The
biplot showed the continuance crossover of GE,
additionally mega-environment for GY. In biplot
hexagon has nine genotypes viz., G35, G97, G169,
G34, G179, G175, G58, G107 and HD2932 (G190) at
the vertices. The HD2932 (G190) respond well in
DRF18 and INDIR18, while G35 and G97 being the
best in DRF17 and DIR17. The biplot is splits into
seven constructively sectors by the equality lines, out
of which three retained all the environments (Fig. 1).

The graph of so-called ‘‘ideal’’ genotype shows
the ranking of genotypes based on GY (Fig. 2). The
characteristic of ideal genotype is to perform well with
high stability across environments (Yan and Tinker
2006), and show longest vector length and no GEI, as
represented by an arrow pointing to it (Fig. 2). A
genotype closer to ideal genotype is considered as

Table 3. Mean yield performance in different environments and first ten AMMI selections per environment

Environments Mean    1    2    3    4    5 6      7 8    9  10

INDRF18 306.8 G12 G127 G25 G137 G114 G135 HD2932 G144 G16 G81

DIR18 463.4 G167 G28 G135 HD2932 G3 G31 G131 G58 G1 G130

INDIR18 419 G97 HD2932 G30 G16 G67 G15 G127 G144 G173 G154

DRF18 379.3 HD2932 G28 G167 G31 G135 G131 G3 G26 G125 G154

DRF17 404.6 G97 G35 HD2932 G154 G63 G31 G67 G159 G76 G128

DIR17 397.4 G35 HD2932 G97 G63 G31 G154 G76 G26 G131 G40
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Fig. 1. Polygon view of GGE biplot showing ‘‘which won

where’’ pattern for genotypes and environments

based on grain yield data

more desirable. Thus, plotting the ideal genotype as
the main point drawn the concentric circle helped in
envisaging the distance between each genotype with
the ideal one (Yan and Tinker 2006). Hence, based on
the genotypes ranking for both mean yield and stability
performance across the six environments HD2932
(G190) followed by G154, G31, G67, G26, G131 and
G125 are closest to ideal genotype, thus considered
as best genotype out of 190 RILs including parents.
On the basis of mean performance (grain yield), AMMI
and GGE biplot analysis it is noticeable that G127,
G120, G105, G190 and G154 considered to be stable,
adapted and high yielding genotype in all suited
environments. The researcher can utilize these
genotypes to further study stable performance under
different moisture regimes. Furthermore, these
genotypes can be used for QTLs/genes identification
for same physiological traits associated with drought
tolerance, in addition to that also used as donors in
breeding for drought tolerance as also suggested by
Khadka et al. (2020).
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Supplementary Table S1. Grand mean grain yield, AMMI stability value and yield stability index along with their
ranking for the 190 bread wheat genotypes tested across six environments

Genotype IPCA1 IPCA2 GM GMrank ASV ASVrank YSI YSIrank

G126 0.26053 0.24565 468.6 19 0.42 4 23 1

G144 -0.52914 -0.84771 472.2 17 1.09 11 28 2

G57 0.6337 -0.73915 449.3 33 1.11 12 45 3

G127 1.3822 0.20931 476.4 12 1.82 33 45 3

G141 0.03887 0.7983 441.8 39 0.80 7 46 4

G14 0.00436 -0.22072 432.8 46 0.22 1 47 5

G82 -0.14348 0.84971 438.7 41 0.87 8 49 6

G105 -1.27952 1.12059 474.3 13 2.01 38 51 7

G95 -1.14731 -0.14963 435.7 44 1.51 20 64 8

G45 -0.5182 -1.47356 438.6 42 1.62 24 66 9

G120 -0.14236 1.83337 450.6 31 1.84 35 66 9

G104 -1.03387 0.0003 428.5 50 1.35 18 68 10

G65 0.04733 0.27572 414.4 73 0.28 3 76 11

G67 -2.33441 0.30391 508.0 3 3.07 74 77 12

G55 -1.93476 1.62951 483.9 10 3.01 72 82 13

G186 -0.42463 -1.546 425.3 58 1.64 25 83 14

G56 -1.97764 0.91045 467.5 22 2.74 62 84 15

G137 1.93221 1.14381 467.7 21 2.77 65 86 16

G185 0.76532 0.72357 415.3 70 1.24 17 87 17

G13 0.33448 -2.12359 428.3 51 2.17 44 95 18

G135 1.10566 3.25158 498.8 8 3.56 88 96 19

G8 0.84686 -0.39582 401.5 85 1.18 14 99 20

G71 -2.21702 -1.09993 458.8 27 3.10 75 102 21

G53 -1.38503 2.93261 468.6 20 3.45 83 103 22

G60 0.01142 -0.26018 391.1 102 0.26 2 104 23

G59 1.22759 0.16382 406.9 81 1.61 23 104 23

SYN46 -1.2755 0.55152 408.0 77 1.76 30 107 24

G177 -1.35236 -0.02681 408.4 76 1.77 31 107 24

G22 -2.50894 -1.26435 462.4 24 3.52 85 109 25

G103 0.29306 -1.87865 409.7 74 1.92 36 110 26

G102 1.31746 0.00634 403.3 83 1.72 28 111 27

G111 -0.12186 -2.00543 409.6 75 2.01 38 113 28

G152 0.08546 -0.8718 389.6 105 0.88 9 114 29

G153 -1.36526 2.03826 426.3 56 2.71 60 116 30

G33 -1.47986 3.02291 459.3 26 3.59 90 116 30

G112 0.76892 1.2527 396.3 95 1.61 23 118 31

G84 -1.06545 1.9736 416.3 67 2.42 51 118 31

G16 -0.51907 -3.31739 441.5 40 3.39 80 120 32

G3 -0.54956 4.20164 482.2 11 4.26 110 121 33

G115 1.70504 1.13573 415.8 69 2.50 53 122 34

(i)
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G90 0.48307 -0.01832 381.7 117 0.63 6 123 35

G18 0.07037 2.21815 407.7 78 2.22 46 124 36

G32 0.92814 -0.00692 384.1 111 1.21 15 126 37

G113 -1.50117 1.91267 417.6 65 2.74 62 127 38

G4 -2.08782 2.1883 436.3 43 3.50 84 127 38

HD2932 -3.50179 1.97942 567.0 1 4.99 129 130 39

G1 1.84493 3.10424 454.0 29 3.93 102 131 40

G131 -2.84402 3.23716 507.0 4 4.93 127 131 40

G96 0.11654 3.01149 423.7 59 3.02 73 132 41

G106 -0.68131 3.28058 428.2 52 3.40 81 133 42

G89 0.71746 -0.98063 382.9 115 1.36 19 134 43

G124 -0.46665 2.32253 402.8 84 2.40 50 134 43

G158 -0.36177 -0.73221 374.2 127 0.87 8 135 44

G138 -0.71092 0.50406 376.3 125 1.06 10 135 44

G181 1.01666 -0.86582 383.3 114 1.59 22 136 45

G92 -0.1078 -0.40907 365.0 133 0.43 5 138 46

G183 2.20633 -0.10207 414.9 71 2.89 67 138 46

G128 -3.64601 -0.32229 473.1 15 4.78 123 138 46

G121 0.63157 -1.63272 388.7 106 1.83 34 140 47

G176 -1.36366 1.18881 394.3 97 2.14 43 140 47

G101 -3.36161 0.10747 460.6 25 4.40 115 140 47

G154 -4.32604 1.10285 516.4 2 5.77 140 142 48

G2 -1.72287 -0.76183 396.6 94 2.38 49 143 49

G26 -3.33045 2.93951 496.3 9 5.26 134 143 49

G94 -0.21102 1.48752 376.8 124 1.51 20 144 50

G44 1.05909 -0.88973 381.6 118 1.65 26 144 50

G86 -2.67841 1.26458 429.6 48 3.73 96 144 50

G130 0.0178 4.13934 445.6 35 4.14 109 144 50

G79 -0.52732 -3.07984 415.9 68 3.16 77 145 51

G110 -2.36112 -2.03291 427.7 53 3.70 94 147 52

G37 -0.16606 1.73876 381.4 119 1.75 29 148 53

G28 -2.18808 5.14843 505.0 5 5.89 143 148 53

G5 -0.6465 2.60901 401.1 87 2.74 62 149 54

G30 -2.04228 -3.61756 449.9 32 4.50 117 149 54

G20 0.80944 -2.80886 407.0 80 3.00 71 151 55

G150 -0.87016 -1.06711 362.3 134 1.56 21 155 56

G174 -3.6031 1.13941 451.3 30 4.85 125 155 56

G164 -1.48922 0.328 379.3 120 1.98 37 157 57

G64 -0.00687 3.77616 423.2 60 3.78 98 158 58

G48 0.12056 -1.78459 372.3 128 1.79 32 160 59

G87 -0.77864 2.82899 400.3 88 3.01 72 160 59

G145 -2.13868 -0.99021 398.6 91 2.97 70 161 60

G93 2.35145 -0.58646 401.3 86 3.13 76 162 61

(ii)
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G15 -0.68596 -3.99584 426.4 55 4.10 107 162 61

G125 -3.45281 4.4283 473.5 14 6.33 150 164 62

G42 -0.90034 -1.30589 360.8 135 1.76 30 165 63

G43 -1.10903 -1.53557 377.3 123 2.11 42 165 63

G161 -1.84311 0.54715 383.6 113 2.47 52 165 64

G129 -2.63881 -2.24371 425.9 57 4.12 108 165 64

G75 1.7128 1.59265 390.3 103 2.75 63 166 65

G38 -0.64382 -2.49788 384.4 110 2.64 58 168 66

G165 -1.44651 -2.172 391.1 102 2.88 66 168 67

G63 -5.37457 2.1624 504.5 6 7.36 162 168 67

G133 -1.66118 -3.07537 414.7 72 3.77 97 169 68

G66 -3.93899 1.36143 448.4 34 5.33 135 169 68

G173 -3.14588 -3.22365 444.2 37 5.23 133 170 69

G151 -1.263 -2.88251 398.1 92 3.32 79 171 70

G61 0.30949 1.64239 348.9 145 1.69 27 172 71

G77 0.73738 -0.76126 335.6 159 1.23 16 175 72

G155 1.81134 1.28686 382.1 116 2.70 59 175 72

G31 -5.09307 5.12031 499.2 7 8.40 168 175 72

G159 -4.63086 -1.35564 456.3 28 6.21 149 177 73

G78 -0.45859 2.82828 384.0 112 2.89 67 179 74

G88 -2.44949 0.63129 391.4 101 3.27 78 179 74

G39 -3.49908 -0.87306 421.8 62 4.66 119 181 75

G162 -4.42863 1.69977 444.9 36 6.04 145 181 75

G19 1.64365 -2.66317 392.7 100 3.42 82 182 76

G122 0.51672 1.97423 349.2 144 2.09 41 185 77

G157 -2.73092 1.20651 399.7 89 3.77 97 186 78

G168 -1.97234 -3.907 417.1 66 4.68 120 186 78

G167 -1.04692 7.27354 464.1 23 7.40 163 186 78

G142 1.38979 0.9788 346.7 149 2.06 39 188 79

G171 -1.26577 -1.49601 352.4 141 2.23 47 188 79

G166 2.41149 1.01836 385.1 109 3.32 79 188 79

G97 -7.12918 -8.69017 473.0 16 12.75 172 188 79

G35 -9.50906 1.28155 470.7 18 12.51 171 189 80

G98 1.39987 -1.29634 351.6 142 2.24 48 190 81

G72 -4.949 0.39484 443.2 38 6.49 152 190 81

G69 0.08729 -2.97068 378.7 121 2.97 70 191 82

G117 -3.52911 -3.09151 427.4 54 5.56 137 191 82

G70 -0.04505 2.57583 354.6 139 2.58 55 194 83

G54 -0.15161 -1.09778 289.3 182 1.12 13 195 84

G10 -4.0385 3.11798 431.7 47 6.14 148 195 84

G148 0.91581 -2.31186 354.3 140 2.60 56 196 85

G132 1.45405 -0.84126 335.7 158 2.08 40 198 86

G49 -3.96315 0.86941 419.8 64 5.26 134 198 87

(iii)
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G116 1.38578 -1.21387 336.7 157 2.18 45 202 88

G172 -4.40449 1.15829 421.3 63 5.88 142 205 89

G52 2.94464 2.14565 398.7 90 4.41 116 206 90

G40 -5.55586 -0.17499 434.1 45 7.27 161 206 90

G188 2.02568 -1.27541 356.5 138 2.94 69 207 91

G107 -4.6534 -0.691 423.0 61 6.13 147 208 92

G119 1.39761 -0.025 296.7 181 1.83 34 215 93

G73 1.27651 1.9523 325.5 162 2.57 54 216 94

G17 1.24679 -4.0345 388.6 107 4.35 112 219 95

G76 -6.78532 0.55026 429.4 49 8.89 170 219 95

G180 -0.98301 -2.39765 335.0 160 2.72 61 221 96

G68 2.19169 0.51307 342.9 154 2.91 68 222 97

G91 4.11133 2.69668 407.4 79 6.02 144 223 98

G47 2.28251 2.11188 365.5 132 3.66 92 224 99

G136 2.38877 1.95514 365.6 131 3.69 93 224 99

G46 2.03606 -0.42206 322.1 166 2.70 59 225 100

G62 2.4759 2.25156 377.8 122 3.94 103 225 100

G51 2.19795 3.70109 390.2 104 4.69 121 225 100

G156 0.58688 4.64293 385.6 108 4.71 122 230 101

G118 1.56843 -2.93092 350.2 143 3.58 89 232 102

G134 1.99762 -0.77131 312.6 172 2.72 61 233 103

G27 1.63805 -1.48735 304.4 178 2.61 57 235 104

G109 -4.67434 -2.61784 404.9 82 6.65 154 236 105

G114 4.65406 0.64298 397.0 93 6.12 146 239 106

G41 2.06288 1.33922 317.0 170 3.01 72 242 107

G143 2.08457 2.5204 347.4 147 3.71 95 242 107

G23 2.84063 1.69736 359.7 137 4.09 106 243 108

G147 -2.37646 -3.06572 371.7 129 4.37 114 243 108

G146 1.46001 -1.9923 286.2 183 2.76 64 247 109

G149 3.67554 0.1429 376.8 124 4.81 124 248 110

G187 2.67544 -0.50014 324.7 164 3.54 86 250 111

G36 2.96351 0.2593 344.5 151 3.89 101 252 112

G74 2.92987 0.96604 347.0 148 3.95 104 252 112

G29 5.06767 2.7337 394.6 96 7.17 160 256 113

G139 3.31668 0.10098 347.5 146 4.34 111 257 114

G58 4.22227 4.94334 393.6 98 7.41 164 262 115

G100 2.80085 -1.22858 325.2 163 3.86 100 263 116

G170 3.28526 0.70206 345.6 150 4.36 113 263 116

G108 2.67864 0.59031 307.5 177 3.55 87 264 117

G12 5.91092 0.17262 392.9 99 7.74 165 264 117

G83 1.71853 -2.85802 312.0 174 3.64 91 265 118

G163 1.44108 -4.67739 360.1 136 5.04 130 266 119

G182 3.94954 3.7208 379.3 120 6.37 151 271 120

(iv)
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G140 -1.50516 -3.25877 312.5 173 3.81 99 272 121

G7 3.04527 0.00127 321.3 167 3.98 105 272 121

G6 3.71644 -0.78997 338.3 155 4.93 126 281 122

G25 5.17849 -1.26121 375.6 126 6.89 155 281 122

G99 -4.53257 -3.70041 369.2 130 6.99 157 287 123

G123 3.17641 1.90332 315.1 171 4.57 118 289 124

G160 -2.85414 -3.95396 338.2 156 5.44 136 292 125

G21 -1.08569 -5.63883 344.1 152 5.81 141 293 126

G50 3.86099 1.01973 323.0 165 5.15 131 296 127

G11 4.23607 0.70371 325.9 161 5.59 138 299 128

G80 3.88858 -0.90782 317.9 169 5.17 132 301 129

G81 3.90527 -4.09271 343.9 153 6.55 153 306 130

G184 3.00762 -3.02404 296.8 180 4.96 128 308 131

G169 2.37436 -4.69304 279.5 184 5.63 139 323 132

G178 5.25064 -1.77767 323.0 165 7.10 159 324 133

G85 3.97626 -4.7017 318.3 168 7.01 158 326 134

G24 1.54162 -6.33577 302.6 179 6.65 154 333 135

G179 5.32512 -0.17269 230.5 185 6.97 156 341 136

G175 5.83066 2.14303 308.6 175 7.92 166 341 137

G9 5.85275 -3.05649 308.2 176 8.24 167 343 138

G34 6.25115 -3.17901 227.1 186 8.77 169 355 139

(v)


