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Abstract

Legumes like chickpea, pigeonpea and groundnut are

protein rich, nutrient-dense, and nitrogen fixing crops.

Their importance is increasingly recognized in view of the

urgent need to address burgeoning malnutrition problem

and to impart sustainability to cropping systems. Breeding

programs in these crops have achieved great success.

However, consistent improvement in genetic gains

demands integration of innovative tools and technologies

with crop breeding programs. Genomic resources are of

paramount significance in context of improving the

efficiency and precision of crop breeding schemes. The

last decade has witnessed a remarkable success in

generating unprecedented genomic resources in these

crops, thus transforming these genomic orphans into

genomic resource rich crops. These genomic resources

include array-based genotyping platforms, high-resolution

genetic linkage maps/HapMaps, comprehensive

transcriptome assemblies and gene expression atlas, and

whole genome sequences etc. Further progression from

the training phase (development) to breeding (deployment)

phase is marked with the current availability of a variety of

molecular breeding products in these legume crops. In the

present review, we discuss how deployment of the modern

genomic resources such as next-generation gene discovery

techniques and “gold standard experimental designs” is

furthering our knowledge about the genetic underpinnings

of trait variation. Also, key success stories demonstrating

the power of molecular breeding in these legume crops are

highlighted. It is opined that the breeding populations

constantly improved by sequence-based breeding approach

will greatly help improving breeding traits and the genetic

gains accruable from crop breeding programs.

Key words: Legume, DNA markers, gene, genome, trait

mapping

Introduction

Legume crops are important in terms of nutritional

security owing to their high protein and nutrient contents

(Bohra et al. 2015; Varshney et al. 2015, 2018). The

signature features of these crops such as biological

nitrogen fixation contribute greatly to sustainable

cropping systems. Improving these crops with

classical breeding tools has made significant progress,

with development and release of a number of varieties

in these crops that suit a range of agro-ecologies in

India. For instance, more than 190 chickpea varieties

(both state and centrally released) have been

developed over the last five decades for cultivation

across diverse agro-ecological zones in India. A

quantum leap has been witnessed in pulses production

in recent years (http://agricoop.gov.in/sites/default/

files/1stadvest_201819E.pdf) and a record production

of pulses (25.23 mt) reported during year 2017-18

reflects that self-sufficiency has been achieved in terms

of production of these protein-rich food crops in India.

However, burgeoning population and increasing

malnutrition problem demand genetic gains accrued

from crop breeding programs to improve perpetually

and increasingly. In the context, genome tools and

technologies made available in recent years hold

promise in enhancing breeding efficiency and genetic

gains per unit time. Recent advances in next

generation sequencing (NGS) technologies have

dramatically impacted upon the legume genomics,

leading to the development of a variety of genomic

tools and technologies including the whole genome
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sequence in these crops (Varshney et al. 2013a, 2015).

Deployment of genomic tools in these crops has

delivered a series of molecular breeding crop products

for future cultivation in farmers’ field (Varshney et al.

2018). Here we review the status of the availability of

genomic tools in the three major legume crops i.e.

chickpea, pigeonpea and groundnut (an important

oilseed crop), and highlight key examples of molecular

breeding in the select crops. We underscore the role

of sequence-based breeding for improving genetic

gains in these crops. We also highlight future

opportunities and challenges that lie ahead while

embracing these modern genomic tools and

technologies for accelerating crop improvement.

Modern genomic recourses in the post-genome

sequencing era

Significant achievements have been made in these

crops over the last decade in terms of generation of a

variety of genomic recourses. In the following section,

we briefly discuss about the large-scale genomic tools

developed recently in these crops.

Genome-wide DNA markers

The first sets of large-scale DNA markers in these

crops were reported in the form of simple sequence

repeat (SSR) markers developed from BAC-end

sequences (BESs) (Bohra et al. 2011; Thudi et al.

2011). Increasing adoption of high throughput next

generation sequencing (NGS) technologies has further

leveraged the arsenal of genetic markers in legume

crops, particularly single nucleotide polymorphism

(SNP) markers for genotyping applications. Initial

examples of genome wide SNP discovery include

2,486 SNPs in chickpea (Hiremath et al. 2012), 1,616

SNPs in pigeonpea (Saxena et al. 2012) and

53,257 SNPs in groundnut (Zhou et al. 2014). Similarly,

genome-wide DNA markers including 1,19,169 and

1,10,491 intron-spanning markers (ISM) from 23,129

desi and 20,386 kabuli protein-coding genes and 7,454

in silico InDel markers from 3283 genes were

developed in chickpea (Srivastava et al. 2016). More

recently, analysis of whole genome resequencing

(WGRS) data in these crops has facilitated

construction of high throughput SNP genotyping

platforms referred to as SNP chips. For instance,

50,590 SNPs were tiled on ‘Axiom
®CicerSNP Array

after extracting high quality nonredundant SNPs from

the resequencing data of 429 chickpea lines (Roorkiwal

et al. 2018a). Similarly, a total of 58,233 high-quality

SNPs identified from sequencing/RNA seq data of 41

genotypes (30 tetraploids and 11 diploids) were tiled

on ‘Axiom_Arachis’ 50K array in groundnut (Pandey

et al. 2017a). In pigeonpea, Axiom Cajanus SNP array

was developed with 56,512 unique and informative

sequence variations from the WGRS data of 104

pigeonpea lines (Saxena et al. 2018).

High-density genetic maps

Genome mapping is key to delineate the specific

genomic regions that exert influence on the phenotypes

of agricultural significance. Initial discovery of SNP

markers was followed by adoption of automated

platforms for SNP typing such as GoldenGate assay,

VeraCode assay and more customized Kompetitive

Allele Specific PCR (KASP) assay (Hiremath et al.

2012; Saxena et al. 2012; Deokar et al. 2014; Gaur et

al. 2015). In recent years, application of sequence-

based genotyping assays such as genotyping-by-

sequencing (GBS) (Saxena et al. 2017a, b, c),

restriction-site associated DNA sequencing (RAD-seq)

(Zhou et al. 2014), specific length amplified fragment

(SLAF) sequencing (Hu et al. 2018) etc. that allow

rapid discovery and mapping of thousands of loci has

caused a marked increase in the number of molecular

markers, thus dramatically improving the marker

density or resolution of the current genetic linkage

maps in these crops.

Since reference genomes are now available in

these crops, low-depth WGRS also referred to as skim

sequencing is emerging as a cost-efficient and

accurate tool for high-throughput genotyping while

overcoming the inherent drawbacks of GBS technology

such as missing data and ascertainment bias. For

instance, Kale el al. (2015) applied skim sequencing

approach in chickpea for analyzing 232 recombinant

inbreds and the parental genotypes. The mapping

parents ICC 4958 and ICC 1882 were sequenced with

an estimated 8× coverage, while the RILs were

sequenced at an average depth of 0.72X. A total of

53,223 SNPs could be placed into 1,610 bins onto

eight chickpea pseudomolecules following a parent

dependent sliding window approach. Table 1 provides

a non-exhaustive list of high-density genetic maps

developed in the three legume crops. Latest additions

to this include 13, 679- and 7769- SNP loci genetic

linkage maps with 1033.67 cM and 1076.35 cM length,

respectively of the two RIL populations (ICC

4958 × ICC 1882 and ICC 283 × ICC 8261) (Roorkiwal

et al. 2018a). Apart from enabling better prioritization

of the candidate genes and fine mapping, these highly

saturated genetic maps are greatly helpful in anchoring
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Table 1. List of some high-density genetic linkage maps in three legume crops

Crop Mapping Population (Type) Number and type of markers Map length (cM) Reference

Chickpea ICC 4958 × PI 489777 (RIL) 1,328 (SNP, SSR, DArT and CISR) 788.6 Hiremath et al. (2012)

ICC 4958 × ICC 17160 (RIL) 8,34 (SSR and SNP) 949.4 Saxena et al. (2014)

ICC 12299 × ICC 8261 (RIL) 3,625 (SNP) 714.1 Kujur et al. (2015)

ICC 4958 × PI 489777 (RIL) 6,698 (SNP, SSR and others) 1,083.9 Gaur et al. (2015)

ICC 4958 × ICC 1882 (RIL) 13, 679 (SNP) 1,033.7 Roorkiwal et al. (2018a)

ICC 283 × ICC 8261 (RIL) 7,769 (SNP) 1,076.4 Roorkiwal et al. (2018a)

Pigeonpea ICP 28 × ICPW 94 (F2) 910 (SNP, SSR) 996.21 Saxena et al. (2012)

Asha ×UPAS 120 (F2) 932 (SSR, SNP) 1,411.8 Arora et al. (2017)

Pusa Dwarf × H2001-4 (F2)

Pusa Dwarf × HDM04-1 (F2)

ICPL 20096 × ICPL 332 (RIL) 1,101 (SNP) 921.21 Saxena et al. (2017a)

ICP 8863 × ICPL 87119 (F2) 996 (SNP) 1,597.3 Saxena et al. (2017a)

ICPB 2049 × ICPL 99050 (RIL) 964 (SNP) 1,120.6 Saxena et al. (2017b)

ICP 5529 × ICP 11605 (F2) 787 (SNP) 1,454 Saxena et al. (2017c)

Groundnut PI 475887 × Grif 15036 (F2) 1,724 (SNP, SSR) 1,081.3 Nagy  et al. (2012)

Zhonghua 5 × ICGV86699 (RIL) 1,685 (SNP, SSR) 1,446.7 Zhou et al. (2014)

Zhonghua 10 × ICG 12625 (RIL) 1,219 (SSR) 2,038.7 Huang et al. (2016)

ICGV 00350 × ICGV 97045 (F2) 1,152 (DArT/DArT-seq) 2423.1 Vishwakarma et al. (2016)

ICGV 07368 × ICGV 06420 (F2) 854 (DArT/DArT-seq) 3,526 Shasidhar et al. (2017)

ICGV 06420 × SunOleic 95R (F2) 1,435 (DArT/DArT-seq) 1,869 Shasidhar et al. (2017)

Huayu28 X P76 (RIL) 2,334 (SNP, SSR) 2,586.3 Hu et al. (2018)

 ZH16 × sd-H1 (RIL) 3,630 (SNP) 2,098.1 Wang et al. (2018)
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Table 2. Some next generation trait mapping studies in three legume crops

Crop Trait Mapping Population QTL/candidate genes R
2 

(%) Candidate genomic region Reference

population size (Chromsome/LG)

Chickpea 100-seed ICC 7184 x 221 CaqSW1.1/Six genes including 47.60 35 kb (Chromosome 1) Das et al. (2015)

ICC15061 constitutive photomorphogenic9

(RIL) (COP9) signalosome complex

subunit 8 (CSN8) gene

100-seed ICC 4958 x Five genes including Ca_04364 28.61 and 1.08 Mb (CaLG01) and 2.7 Mb Singh et al. (2016a)

weight ICC 1882 and Ca_04607 19.25 (CaLG04)

(RIL)

Total dry Four genes including Ca_04586 23.39 and 1.10 Mb

root wt. to 24.46  (CaLG04)

total plant

dry wt. ratio

Flowering ICC 4958 x 260 CaqaDTF4.1, CaqaDTF4.2, 33-49 757-kb and 907.1-kb Srivastava et al. (2017)

time ICC 17163 Caqb DTF4.1, CaqbDTF4.2/efl1 (Chromosome 4)

(RIL) and GI

ICC 4958 x 204

ICC 8261

(RIL)

Ascochyta FLIP84-92Cx 250 qABR4.1/CaAHL18 gene - 500 kb (Chromosome 4) Kumar et al. (2018)

blight PI359075 (RIL)

FLIP84-92C x 217

PI599072 (RIL)

Pigeonpea Fusarium ICPL 20096 x 188 Four candidate genes CcLG02 and Singh et al. (2016b)

wilt (FW) ICPL 332 (RIL) including C. cajan_03203 CcLG11

Three InDels CcLG02, CcLG07 and CcLG08 Singh et al. (2017)

Sterility ICPL 20096 x Three candidate genes including CcLG02, CcLG08 and CcLG11 Singh et al. (2016b)

mosaic ICPL 332 (RIL) C. cajan_01839

disease Two InDels CcLG02 and CcLG10 Singh et al. (2017)

(SMD)

Groundnut Rust TAG 24 x 25 candidate genes 42.7-83.6 3.06 Mb (A03) Pandey et al. (2017b)

resistance GPBD 4 (RIL)

Late leaf Nine candidate genes 9-63.1 2.98 Mb (A03)

spot

Late leaf Florida-07 x 192 - - 4.7 Mb (A05), 1.2 Mb (B03) Clevenger et al. (2018)

spot GP-NC WS 16 and 3.4 Mb (B05)

(RIL)

 Shelling Yuanza 9102 x 195 Nine candidate genes 8.18-20.26 2.75Mb (A09), 1.1Mb (B02) Luo et al. (2018)

%age Xuzhou 68-4

(RIL)
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reported in pigeonpea following survey of a

transcriptome assembly (Dubey et al. 2011). The most

comprehensive transcriptome assembly in pigeonpea

combines sequence data (Illumina, 454 and Sanger

ESTs) from >16 genotypes (Kudapa et al. 2012) and

6,284 intron spanning region (ISR) markers were

reported.

Thousands of differentially expressed genes

(DEGs) emanating from gene expression experiments

still remain inadequate to explain translation of genome

sequence information into plant phenotypes (Kudapa

et al. 2018). To bridge this gap, Cicer arietinum gene

expression atlas (CaGEA) was constructed from deep

sequencing of 27 samples from five developmental

stages (germination and seedling, vegetative,

reproductive, and senescence) of the drought tolerant

chickpea ICC 4958. The CaGEA uncovered 15,947

unique DEGs and gene clusters involved in growth

and development and importantly, nine differentially

expressed QTL-hotspot genes (inferred from RNA Seq)

were validated through qRT-PCR. Similarly, the

Cajanus cajan gene expression atlas (CcGEA) based

on the RNA seq data from 30 samples spanning five

stages of the genotype Asha, and the CcGEA revealed

a total of 28,793 significantly expressed genes, with

28 flowering related genes and three hub genes playing

key role in pollen development and seed formation

(Pazhamala et al. 2017). The groundnut gene

expression atlas covering 22 different tissue types

profiled genes and gene networks that control growth

and development such as flowering and geocarpy

(Clevenger et al. 2016; http://bar.utoronto.ca/

efp_arachis/cgi-bin/efpWeb.cgi). Also, significance of

alternative splicing events and non-coding RNAs was

also discussed in the developmental context. The gene

networks comprised of genes involved in vegetative,

reproductive and seed development (Clevenger et al.

2016). Another gene expression atlas for groundnut is

underway at ICRISAT (unpublished). The global view

of gene expression patterns as elucidated by these

comprehensive transcriptomic resources will greatly

support basic and applied research for crop

improvement in legumes.

Whole genome sequencing

The reference genome sequences are now available

in all these three crops, thanks to the appearance and

subsequent democratization of NGS technologies

(Bohra and Singh 2015, Varshney et al. 2013a). Draft

whole genome assemblies of ~738-Mb and ~605-Mb

were reported for kabuli chickpea genotype CDC

Frontier (Varshney et al. 2013b) and a popular

pigeonpea variety Asha (ICPL 87119) (Varshney et

al. 2012) respectively. Given the allotetraploid nature

of cultivated groundnut, Bertioli et al. (2016) assembled

1,211-Mb and 1,512-Mb genomes of its diploid

ancestors Arachis duranensis and Arachis ipaensis,

respectively. Concerning the salient features of these

genome assemblies, chickpea genome assembly

contains 28,269 genes and a GC content of 30.7%,

while pigeonpea genome assembly has 48,680 genes

and 32.8% GC content. The genome assemblies of

A. duranensis and A. ipaensis contain 36,734 and

41,840 genes, respectively. Chen et al. (2016)

assembled 1,051-Mb of genome of the A-genome

progenitor A. duranensis containing 50,324 protein-

coding gene and 31.8% GC content. These genome

assemblies shed new light on the genomic regions

related to breeding traits like disease resistance in

chickpea (187 candidate genes) and groundnut (345

and 397 genes in the A. duranensis and A. ipaensis
assembly, respectively), drought tolerance (111

candidate genes) in pigeonpea, and oil biosynthesis

and allergens in groundnut (1,671 genes).

Genetic landscape of important traits: Shifting

paradigms and improved understanding of trait

architectures

Determination of the genomic regions or DNA markers

that explain substantial portion of the phenotypic

variation for a given trait is of paramount significance

in crop improvement. Classical QTL analysis using

bi-parental populations has revealed several genomic

regions/DNA markers associated with a variety of

important traits in these crops. Some of the important

traits that have been dissected using QTL mapping

include stress resistance [Fusarium wilt (FW),

ascochyta blight (AB), botrytis gray mold, and drought

in chickpea; FW and sterility mosaic disease (SMD)

in pigeonpea; and root knot nematode, rust, late leaf

spot (LLS), rosette disease, tomato spotted wilt virus,

and drought in groundnut] and other important traits

such as double podding in chickpea, fertility restoration

in pigeonpea and oil quality in ground nut (see

Varshney et al. 2013a, 2015). However, classical QTL

analysis remains time-consuming and labour-intensive.

Integration of NGS with the gene mapping methods is

greatly reducing the time, labour and cost that are

otherwise invested in marker discovery and mapping

in classical methods.

Rapid gene discovery in bi-parental populations

Researchers in legume crops are now widely
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embracing these next generation QTL mapping

techniques such as QTL-seq for rapid discovery of

the QTL/genes. QTL-seq combines bulked segregants

analysis (BSA)/selective DNA pooling with WGRS to

compute genome-wide SNP-index to delineate

genomic regions influencing trait variation (Takagi et

al. 2013). As shown in Table 2, RIL populations have

(Pandey et al. 2017) and LLS resistance (Pandey et

al. 2017, Clevenger et al. 2018), and shelling

percentage in groundnut (Clevenger et al. 2018). While

analyzing 100-seed weight in chickpea, Das et al.

(2015) narrowed down the candidate genomic region

underlying the QTL ‘CaqSW1.1’ to 35 kb on

chromosome 1 and identified six genes including

Table 3. QTL discovery and introgression in legume crops

Crop Trait QTL Name QTL mapping MAS/MABC

Chickpea Drought tolerance QTL-hotspot Varshney et al. (2014a) TAA170, ICCM0249, and STMS11 (Varshney

et al. 2013c)

Ascochyta blight QTLAR1 Iruela et al. (2006); CaETR (Bouhadida et al. 2013) GAA47,

resistance Madrid et al. (2013) SCY17, TA130, TA2 (Varshney et al. 2014b)

QTLAR2 Iruela et al. (2006) SCY17590 (Bouhadida et al. (2013) GAA47,

SCY17, TA130, TA2 (Varshney et al. 2014a)

QTLAR3 Iruela et al. (2007) GA16, TS82, TA194, TR58

Fusarium wilt Foc1 Mayer et al. (1997); GA16, TAA60, TA194, TS82, TA110, TR19

resistance Gowda et al. (2009),  (Varshney et a. 2014a)

Sabbavarapu et al. (2013)

Foc2 Gowda et al. (2009) TA 37,  TA110 (Pratap et al. 2017)

Foc3 Sharma et al. (2004); GA16, TAA60, TA194, TS82, TA110, TR19

Gowda et al. (2009) (Varshney et a. 2014a)

Foc4 Tullu et al. (1998, 1999) GA16, TA59, TA96, TR19, TA27

(Mannur et al. 2019)

Groundnut Rust resistance QTLrust01 Khedikar et al. (2010) IPAHM103 (Varshney et al. 2014c)

QTLR4-rust01/ Sujay et al. (2012) GM1536 (Varshney et al. 2014c)

QTLR5-rust01

QTLR4-rust02 Sujay et al. (2012) GM2301, GM2079 (Varshney et al. 2014c)

Nematode Rma Chu et al. (2007a) SR 197, CAPS 1169/1170 (Chu et al. 2011)

resistance Nagy et al. 2010 GM565 (Chu et al. 2011)

Improved oil ahFAD2A Chu et al. (2007b); CAPS 1101/1048 and a HybProbe SNP assay

quality Chen et al. (2010)

Chu et al. (2011);

AS-PCR, CAPS

Janila et al. (2016a;

Bera et al. 2018)

ahFAD2B Chu et al. (2009); HybProbe SNP assay (Chu et al. 2011);

Chen et al. (2010) AS-PCR, CAPS (Janila et al. 2016a;

Bera et al. 2018)

 Late leaf spot QTLLLS01 Sujay et al. (2012) Varshney et al. 2014b; Janila et al. 2016b

been assayed with QTL-seq in legume crops to dissect

agronomically important traits such as 100 seed weight

(Das et al. 2015, Singh et al. 2016a), flowering time

(Srivastava et al. 2017) and AB resistance (Kumar et

al. 2018) in chickpea; resistance to FW and SMD

(Singh et al. 2016b, 2017) in pigeonpea; and rust

constitutive photomorphogenic9 (COP9) signalosome

complex subunit 8 (CSN8) gene. Similarly, four

candidate genes including C.cajan_03203 and three

candidate genes including C.cajan_01839 were

identified in pigeonpea for resistance to FW and SMD,

respectively by using Seq-BSA along with WGRS of
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four additional resistance and susceptible genotypes

(Singh et al. 2016b). The same group applied InDel

Seq approach in pigeonpea to identify InDels

associated with the candidate genes underlying FW

and SMD resistance (Singh et al. 2017). This facilitated

identification of 16 candidate InDels, of which five were

successfully validated. Importantly, the candidate

genes identified through QTL-seq experiments were

further validated by other approaches like classical

QTL mapping, expression analysis and amplicon

sequencing of the candidate genes in contrasting

accessions/parental genotypes. Most recently, Luo

et al. (2018) have identified nine candidate genes on

chromosomes A09 and B02 for shelling percentage in

ground nut, and further QTL analysis with the KASP

markers developed targeting four ns SNPs could

account nearly 20% variation to the two genomic

regions. Takagi et al. (2013) have emphasized the

relevance of QTL-seq in analyzing the experimental

populations that are derived from closely related

individuals, and its ability to fine dissect the genetic

make up of natural quantitative variation unlike

artificially-mutagenized traits in case of MutMap. This

assumes significance for genetic analysis of

experimental populations in legume crops where low

level of genetic polymorphism in the cultivated pool is

evident from considerable body of literature.

Genome wide association studies (GW AS)

The GWAS has become a routine genomic tool to

elucidate the genetic landscape of complex traits in

diverse individuals assayed with genome-wide sets

of genetic markers (Liu and Yan 2019). With more

than 1000 studies reported over the last decades in

different crops (Liu and Yan 2019), the GWAS is

increasingly deployed to discover new genotype-

phenotype associations for important traits in legume

crops. In chickpea, the GWAS has revealed marker-

trait associations (MTAs) for biotic stresses such as

AB (Li et al. 2017), abiotic stresses like heat and

drought stress related traits (312 MTAs; Thudi et al.

2014), and protein content (seven SNP loci; Upadhyaya

et al. 2016a) and seed iron and zinc content (16

genomic loci/genes; Upadhyaya et al. 2016b) etc. In

groundnut, GWAS of 158 groundnut accessions with

17,338 SNPs led authors to identify 41 MTAs for 11

domestication related traits, and the authors suggested

selection sweeps on chromosome A3 based on the

presence of 662 genes on this particular chromosome

(Zhang et al. 2017). Earlier, Pandey et al. (2014)

analyzed 300 accessions of reference set with 154

SSR and 4,597 diversity arrays technology (DArT)

markers and detected a total of 524 MTAs with PV

ranging between 5.81-90.09% for 36 important

agronomic, disease and quality traits.

In view of the declining sequencing cost, the

GWAS is combined with WGRS data using SUPER

GWAS method for high-resolution trait mapping. For

example, GWAS with WGRS data of chickpea

accessions revealed 100-kb (AB4.1 QTL) and 437-kb

regions on chromosome 4 for AB resistance (Li et al.

2017) and yield-related traits (Li et al. 2018),

respectively. Similarly in pigeonpea WGRS data of

292 pigeonpea accessions facilitated identification of

241 MTAs, with CcLG09 carrying 90% of the MTAs

detected for days to 50% flowering and six structural

variations (SVs) explaining 75% of these MTAs. The

study highlighted the important role of CcLG09 during

the pigeonpea domestication and breeding (Varshney

et al. 2017). The constantly decreasing cost of

sequencing and the concurrent refinements in

informatics tools will further motivate researchers to

combine WGRS and GWAS to rapidly deliver the

functional markers for genomics-assisted breeding in

the legume crops.

Multi-parental mapping resources for enhanced
trait dissection

The “gold standard experimental designs” with balanced

genetic structure and power of controlled crosses have

been recently used in molecular mapping of complex

traits in various crop plants like rice, wheat, maize

etc. (see Wallace et al. 2012). Two of such designs

are multiparental advanced generation intercross

(MAGIC) and nested association mapping (NAM).

These designs remain extremely relevant while

dissecting the genetics of adaptation traits that are

often confounded with the population structure (Wallace

et al. 2012), and also for detection of epistatic

interactions (Liu and Yan 2019). These designs allow

incorporation of multiple founders and occurrence of

profuse recombinational events. The multiparent

mating designs MAGIC and NAM have been recently

implicated in chickpea and pigeonpea. In chickpea,

founder parents and 1,000 F6 MAGIC lines have been

sequenced at depths of 10X and 2-3X, respectively

and this sequencing data together with the phenotypic

data will be used to conduct GWAS in this population

(Huang et al. 2015). Availability of such high-power

mapping resources will greatly facilitate enhanced trait

discovery apart from broadening the genetic base of

the current breeding programs of the legume crops.
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Marker assisted selection (MAS) in legume crops:
Notable Examples

In legume crops, marker-assisted back crossing

(MABC), the first generation molecular breeding tool,

has been extremely successful in transferring QTL

having large effects on the phenotype (Table 3). A

recent report on MABC demonstrates fast-track

transfer of wilt resistance in the background of FW

(race 4)-susceptible chickpea cultivars Annigeri 1 and

JG 74 (Mannur et al. 2019). The SSR-guided transfer

of the QTL controlling FW resistance was

accomplished using WR 315 (a resistant landrace) as

the donor parent. In addition to the enhanced level of

disease resistance, the improved versions thus

obtained have also shown substantial yield advantage

(8 to 53%) over the recurrent parents. Other notable

examples of MABC in chickpea include introgression

of QTL-hotspot into the background of an elite cultivar

JG 11 (Varshney et al. 2013c), development of FW-

and AB-resistant versions of the cultivar C 214

(Varshney et al. 2014b) and improved Pusa 256 having

enhanced FW resistance (Pratap et al. 2017). Like

chickpea, MAS has been deployed in groundnut

breeding programs to improve several traits such as

resistance to foliar diseases and nematode, and oil

quality i.e. oleic to linoleic (O:L) acid ratio. For example,

MABC scheme has enabled introgression of foliar

disease resistant QTL from GBPD 4 (a disease

resistant donor) into susceptible cultivars ICGV 91114,

JL 24 and TAG 24 (Varshney et al. 2014c) and TMV 2

(Kolekar et al. 2017). In a similar manner, MAS for

ahfad2 alleles using allele specific (AS)-PCR and

cleaved amplified polymorphic sequence (CAPS)

markers has facilitated rapid recovery of introgression/

recombinant lines with increased oleic acid and high

O:L ratio (Janila et al. 2016a, Bera et al. 2018).

Genomic selection and improved prediction
accuracies 

Genomic selection (GS) enables identification of

individuals with unobserved phenotypes exclusively

based on genome wide marker data (Bohra 2013).

Ability of GS to capture small effect QTL scattered

throughout the genome makes this a method of choice

for improving complex breeding traits. Latest

development of large-scale genomic resources in

legume crops has paved the way for GS

implementation in crop breeding programs and initial

results are encouraging (Varshney et al. 2018). For

example, a set of 320 elite chickpea lines was

genotyped with 3,000 DArT seq markers and the

collection was evaluated for yield and related traits

across two crop seasons and irrigated/rainfed

conditions. High prediction accuracies for traits like

100 seed weight that are less influenced by the

environment were reported by Roorkiwal et al. (2016).

In another study, the same group showed how GS

prediction accuracies vary based on genotyping

platforms and environmental influence and found DArT

seq yielding better prediction accuracies than the GBS

data (Roorkiwal et al. 2018b). Also, incorporation of

genotype-environment (G × E) interactions into

genomic prediction model improved prediction

accuracy (Roorkiwal et al. 2018b). A variety of other

factors like number of DNA markers, size of training

population are known to influence prediction

accuracies. Though GS does not essentially require

any prior information of MTAs, prediction accuracies

are reported to improve following incorporation of a

subset of associated loci into the GS models (Li et al.

2018).

Sequence-based breeding in legume crops:

Possibilities and challenges

Most of the traits of agronomic significance are

controlled by a large number of small effect QTLs.

And, first generation molecular breeding tools like

MABC face great challenge while pyramiding multiple

genes/QTL into single genotypes. It becomes

practically difficult to genotype such large sized

segregating populations that could be theoretically

predicted in order to recover a genotype carrying

suitable combinations of genes/QTLs. In view of the

constantly decline cost of sequencing, Varshney et

al. (2018) have proposed sequence-based breeding

strategy for crop improvement, which entails that a

larger set of founder genotypes/germplasm collection

should be sequenced at greater depth followed by

GWAS to identify the desirable genotypes harbouring

highest number of favourable alleles and least

deleterious alleles. Crossing of such superior

genotypes will eventually lead to a population in which

high-performing individuals could be chosen using GS

models trained with founder genotypes/germplasm.

The genotypes thus selected could be either directly

released as a variety or recycled back into the breeding

program to initiate the next round. This sequence-based

strategy that seeks continuous population improvement

is need of the hour in order to sustain breeding

programs for delivering rapid genetic gains. In parallel,

authors advocate the use of MABC/MAS for ‘defect

elimination’ of mega varieties in the crops. For GS,

population genotyping is suggested by SNP arrays or
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other methods skim sequencing or GBS based on the

resources available (Varshney et al. 2018).

Conclusion and perspectives

Tremendous progress in legume genomics over the

last decade has resulted in the current availability of

unprecedented genomic resources. Growing

application of these modern tools in crop improvement

programs has witnessed a dramatic progress from

training (development) phase to breeding (deployment)

phase. This training-to-breeding phase progression is

evident from the delivery of a variety of molecular

breeding products in these crops. Many of these

products are being evaluated under All India

Coordinated Research Projects (AICRPs) of the

respective crop in order to facilitate their possible

cultivation at farmers’ field in years to come. Since

DNA sequencing is increasingly become affordable to

researchers, the major stumbling block that hampers

the crop breeding progress is accurate and precise

phenotyping. However, large-scale plant phenotyping

worth the investment with the adoption of new breeding

methods like GS that rely on minimal phenotyping.

While methods like MAS/MABC become integral part

of legume breeding programs, we anticipate that

breeding populations constantly improved by sequence-

based breeding approach will help accelerating the

genetic gains. Realization of the full potential of

sequence-based breeding approach, however, will

depend upon the decrease in the sequencing cost and

its affordability in near future, development of cost-

efficient phenotyping (field-based or automated)

protocols and importantly, the ability of researchers

to use analytical tools to derive meaningful inferences

from the deluge of sequencing and phenotyping

datasets.
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