GENETICS OF FLOWER COLOUR AND GLOSSINESS IN INDIAN MUSTARD (BRASSICA JUNCEA (COSS)

RAM DHARI AND T. P. YADAVA

Department of Plant Breeding, CCS Haryana Agril. University, Hisar 125004

(Received: December 16, 1991; accepted: December 30, 1992)

ABSTRACT

Genetics of flower colour and glossiness of foliage was studied in the crosses involving four parents, RWH-1 (white flower); RC 1425 (glossy), and RH 30 and RH 7859 (nonglossy and yellow flowers). A segregation ratio of 3 nonglossy : 1 glossy in F₂ generations of different crosses indicated that glossiness is controlled by a single recessive gene. This was confirmed by studying the back-cross generations. Similarly in crosses of yellow and white flower parents a segregation ratio of 15 yellow : 1 white flower in F₂ generations, indicated that flower colour is controlled by two genes where white flower colour is double recessive. This was also confirmed by studying the back-cross generations.

Key words: Indian mustard, inheritance, flower colour, glossy stem.

It is known that some plant characters provide resistance against insect infestation. A study was undertaken to see the inheritance pattern of two such characters glossiness and white flour colour in Indian mustard. These have been reported to provide resistance against mustard aphid (*Lipaphis erysimi* Kalt.) [1–3]. The results of this study are presented here.

GLOSSINESS

The inheritance of glossiness was studied by crossing a glossy parent (RC 1425) and three nonglossy parents (RWH–1, RH 30 and RH 7859). Three crosses, viz. RH 30 x RC 1425; RH 7859 x RC 1425; RWH–1 x RC 1425, and their back-crossed progenies were obtained to study the segregating ratio in F₂ generations. All the parents along with their F₁s, back crosses with both the parents and F₂ progenies were raised to study the inheritance pattern. The F₁s indicated the dominance of nonglossy over glossy and this was also confirmed by the study of back-cross generation (when the recurrent parent is nonglossy). The genetic ratio of 3 nonglossy : 1 glossy was obtained in F₂ generations of all the crosses studied (Table 1). The back-cross generation involving glossy parent as recurrent parent showed a ratio of 1 nonglossy : 1 glossy. From this study it was concluded that single recessive gene pair is August, 1993]

Cross/generation	Normal stem		Glossy stem		Ratio	χ ²	Р
	0	E	0	E			_
RH 30 × RC 1425							
F1	All		0				
F ₁ x RH 30	All		0				
F1 x RC 1425	103	97.5	92	97.5	1:1	0.310	0.20-0.30
F ₂	374	364.5	112	121.5	3:1	0.247	0.20-0.30
RH 7859 × RC 1425							
F ₁	All	_	0				
F ₁ x RH 7859	All		0				
F1 x RC 1425	173	168.0	163	168.0	1:1	0.149	0.20-0.30
F ₂	557	543.0	167	181.0	3:1	0.361	0.25-0.35
RWH-1 × RC 1425							
F1	All		0				
F ₁ x RWH–1	All	—	0	—			
F1 x RC 1425	219	204.0	189	204.0	1:1	1.103	0.90-0.95
F ₂	626	613.5	192	204.5	3:1	0.255	0.20-0.30

 Table 1. Segregation for glossy foliage in Indian mustard

O—observed, E—expected.

responsible for the inheritance of glossy trait in Indian mustard. This confirms an earlier study [1]. However, Angadi et al. reported that glossy trait was controlled by a single dominant gene [2].

WHITE FLOWER COLOUR

To study the inheritance pattern of white flower colour, RWH–1 (white flowered) was crossed with RH–30 and RC 1425 (both yellow flowered). The data presented in Table 2 indicate that F_1 generations of both the crosses had yellow flower, suggesting that yellow colour is dominant over white flower colour. This is further confirmed by the study of back-cross generations where the recurrent parent had yellow flowers and all the progeny also produced yellow flowers. The segregation ratio in F_2 generation of both the crosses was 15 yellow : 1 white indicating that two gene pairs determine the inheritance of this trait. This was also confirmed by the study of back-cross generation of these crosses where white flowered parent was used as the recurrent parent and a ratio of 3 yellow : 1 white was

Cross/generation	Yellow		White		Ratio	χ^2	Р
	0	E	0	E			
RWH-1 × RC 1425			e				
F ₁	All		0	_			
F ₁ x RWH-1	226	231.75	83	77.25	3:1	0.143	0.20-0.30
F ₁ x RC 1425	All		0				
F ₂	756	766.87	62	51.13	15.1	0.154	0.20-0.30
RH 30 × RWH-1							
F ₁	All		0	_			
F1 x RH 30	All	_	0	_			
F ₁ x RWH-1	230	243.75	95	81.25	3:1	0.727	0.30-0.50
F ₂	725	735	59	49	15:1	0.136	0.20-0.30

Table 2. Segregation for flower colour (yellow/white) in Indian mustard

Note. χ^2 value is 2.71 at 1% and 3.84 at 5%.

obtained. From this study it was concluded that white flower colour is controlled by two recessive genes as reported earlier [4].

REFERENCES

- 1. A. K. Yadava, H. Singh and T. P. Yadava. 1985. Inheritance of nonwaxy trait in Indian mustard and its reaction to the aphids. J. Oilseeds Res., **2**: 120–123.
- 2. S. P. Angadi, J. P. Singh and I. J. Anand. 1987. Inheritance of nonwaxiness and tolerance to aphids in Indian mustard. J. Oilseeds Res., 4: 265–267.
- 3. S. D. Chatterjee and K. Sengupta. 1987. Observation on reaction of mustard aphid to white petal and glossy plants of Indian mustard. J. Oilseeds Res., 4: 125–127.
- 4. D. S. Rawat and I. J. Anand. 1986. Inheritance of flower colour in mustard mutant. Indian J. agric. Sci., 56(3): 206–208.