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Abstract

The knowledge of key traits contributing to stress tolerance
could contribute to increasing the efficiency of the selection
process leading to development of drought tolerant
genotypes. Over three years (2010-13), 25 durum wheat
genotypes were evaluated for different agro-physiological
traits under drought conditions. Four statistical procedures
including path analysis, stepwise regression, principal
component analysis (PCA) and factor analysis (FA) were
used to identify the most contributors to grain yield. A
mean score index (MSI) based on scaling scores of selection
criteria was used for genotypes characterization. The
average yield productivity varied between 774 to 2360 kg/
ha across years. The statistical procedures confirmed the
chlorophyll fluorescence (Fv/Fm), spike length, SPAD
reading, plant height, peduncle length and heading date as
the most contributors to yield productivity in durum wheat.
The methodology of scoring scale provided a simple and
easy visualization and identification of resilient, productive
and/or contrasting genotypes according to selection
criteria. The PCA and FA by justifying the high portion of
variability in yield were found to be more efficient for
developing proper models for indirect selection.

Key words: Drought stress, durum wheat, grain yield,
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Introduction

Developing high yielding wheat cultivars under drought
conditions in arid and semi-arid regions is an important
objective of breeding programs. Durum wheat (Triticum
turgidum L. var. durum Desf.) is grown on 10% of the
world’s wheat area. It occupies about 11 million ha in
the Mediterranean basin. Terminal drought stress
constrains wheat production in rainfed regions of the
world including Iran. However, grain yield improvement
is the major objective of wheat improvement programs

in those regions. Rainfed wheat covers two-thirds of
Iran’s total wheat area, but accounts for only about
one-third of total wheat production (Mohammadi et al.
2013). Developing plants with suitable advantages
under drought conditions is a basic challenge for wheat
improvement programs (Trenberth 2011; Staniak and
Kocon 2015). Grain yield is a complex quantitative
trait that results to the actions and interactions of
various component traits (Singh and Diwivedi 2002).
However, developing drought-tolerant varieties is an
important objective of breeding programs and is
expected to play a crucial role in climate change
mitigation strategies (Gustafson 2011). Thus, the
knowledge of traits associated with drought tolerance
would be useful for breeding materials in drought prone-
environments (Girdthai et al. 2009; Mir et al. 2012;
Mohammadi et al. 2013).

However, appropriate traits used to develop
proper models for indirect selection should have
significant genetic variability. Different statistical
techniques have been used in modeling crops yield.
The information on the nature and magnitude of
correlation coefficients help breeders to determine the
selection criteria for simultaneous improvement of
various characters along with yield. However, simple
correlation analysis that relates grain yield to a single
variable may not provide a complete understanding of
the importance of each component in determining grain
yield (Dewey and Lu, 1959; Singh et al. 1979).
Partitioning the correlation coefficient into direct and
indirect effects can be done through path analysis
technique (Dewey and Lu, 1959). Many reports have
used this technique on wheat (Ehdaei and Waines
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1989), soybeans (Leilah et al. 1988), rapessed (Huang
et al., 2015) and in chickpea (Canci and Toker 2009).
Stepwise regression analysis proved to be efficient to
determine the predictive equation for yield (Leilah and
Al-Khateeb 2005; Mohammadi et al. 2013). Factor
analysis suggested by Walton (1972) has been widely
used to identify growth and plant traits related to wheat
(Moghaddam et al. 1998; Canci and Toker 2009). The
principal components analysis (PCA) is a multivariate
statistical technique for exploration and simplifying
complex data sets. Leilah and Al-Khateeb (2005) used
seven different statistical procedures to study the
relationship between wheat grain yield and its
components.

Identification of genotypic variabil ity for
agronomical and physiological traits under drought
conditions is of great interest for breeders because
selected genotypes with favorable traits can be used
as parents in future crosses. Therefore, this study
was conducted to show the relationship between grain
yield and different plant traits under drought conditions
of Iran.

Materials and methods

Plant materials and experimental layout

Plant genetic material were diverse and consisted of
25 wheat genotypes including 21 durum breeding lines
(G1-G21), one new durum cultivar (G22, “Saji” cultivar),
two old durum varieties (G23, “Zardak” cultivar; and
G24, “Gerdish” cultivar) and one popular bread wheat
variety (G25, “Sardari” cultivar). The genotypes
evaluated under rainfed conditions during three
cropping seasons (2010-13). The experiments were
conducted at Dryland Agricultural Research Institute
(Sararood station, Kermanshah, Iran; 34o19´N;
47o17´E; 1351 m above sea level). The site
representative for moderate winter cold rainfed areas
in durum wheat breeding program. The average crop
season rainfall of the experimental site is 425 mm
with minimum and maximum temperatures of -20 and
45oC, respectively, and 60-100 days of freezing
temperatures annually. The soil at the site was clay
loam. At each cropping season, experimental layout
was a randomized complete block design with three
replications. Management practices recommended for
each trial were followed in the all yield trials.

Measurement of plant traits

Chlorophyll fluorescence was measured using a
fluorometer (OS30, Opti-Science, Hudson, NH, USA)

between 11:00 and 14:00 hours. The clips were placed
on the flag leaf and closed to prevent any light from
entering into the clipped spot and the clips were left
there for at least 30 min. Following dark adaptation,
readings were taken by inserting the flourometer tip,
opening the clip shutter and then giving a flash of light
from the fluorometer that activated the Photo system-
II reaction centers of the photosynthetic apparatus
(Ristic et al. 2007). Stomatal conductance (SC) was
measured by using a leaf porometer (Decagon Devices,
Inc., Pullman, WA, USA). Three random plants were
selected in each plot for determining gas exchange
parameters. All measurements were made on the flag
leaf.

Canopy temperature (CT) was measured using
a handheld infrared instrument (E200IR, Germany).
Three measurements were taken per plot at
approximately 0.5 m from the edge of the plot with an
approximately 45o from the horizontal position. Canopy
temperatures were measured between 12:00 to 14:00
hours on a clear sunny day.

The other physiological traits measured were
including relative water loss (RWL, Yang et al. 1991),
relative water content (RWC, Barrs 1968) and relative
growth rate (RGR, Hoffmann and Poorter 2002).

At maturity, the agronomic traits recorded for
each genotype were plant height (PH), peduncle length
(PL), flag-leaf length (FL), spike length (SL), days to
heading (DH), days to maturity (DM), grain yield (YLD),
1000-kernel weight (TKW) and number of grain per
spike (NGPS). Days to heading was designated as
the time when 50% of the plants in a plot had at least
one open flower. Days to maturity was recorded when
50% of the plants in a plot had yellow leaves. The PH,
PL, FL, SL, and NGPS were measured based on five
randomly samples for each genotype at physiological
maturity. After harvest, the TKW was recorded based
on weight of 1000 grains for each genotype. The plot
yields were converted to productivity per hectare (kg/
ha) and subjected to statistical analyses.

Data analyses

Analysis of variance was carried out using the MSTAT-
C statistical program. For each trait, the data of 25
genotypes grown across three years were subject to
combined analysis of variance to partition trait variation
into year (Y), genotypes (G), and GxY interaction
effects. In multi-year trials with m genotype and n year,
the combined ANOVA of multi-year data is based on
the following equation:
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ijk i j ij jk ijkX  = µ + g  + y  + (gy)  + b  + e

where Xijk is the phenotypic value of the ith genotype
in the kth replicate in the jth year; µ is mean of all
genotypes over all years; gi is the effect of the ith
genotype as fixed factor, i=1, 2, … m; yj is the effect
of the jth year as random factor, j=1, 2 .... , n; (gy)ij is
effect of the interaction between ith genotype and the
jth year, bjk is the effect of the kth replicate in the jth
year, k =  l, 2 ..... p; and eijk is random error deviate on
the ith genotype in the kth replicate in the jth year.

Broad-sense heritability for yield and each plant
traits were estimated to take account of the more
stable traits as: genotypic variance/phenotypic

variance: 2 2/b g ph   , the phenotypic variance was

calculated as follow (Nyquist 1991):

   2 2 2 2
/ /p g gy y e ry     

where y, g and r are represent for year, genotype, and
replication, respectively, and 2

g and 2
e are the

components of variance for genotypes and error,
respectively. Path coefficient analysis developed by
Wright (1921) and applied by Dewey and Lu (1959),
was used to partitioning the correlation coefficients to
their direct and indirect effects through other traits.
Stepwise multiple linear regression analysis was used
according to Montgomery (2006) to develop the
prediction model for grain yield and to determine the
variables accounting for the majority of total grain yield
variability. Principal component analysis (PCA) was
used to classify variables into major components and
their total variation. In this model, the first principal
component accounting for as much of the variability
in the data as possible, and each succeeding
component accounts for as much of the remaining
variability as possible (Everitt and Dunn1992).

The factor analysis method (Cattell 1965)
consisted of the reduction of a large number of
correlated variables to a much smaller number of
clusters of variables called factors. Then the matrix
of factor loading was submitted to a varimax orthogonal
rotation (Kaiser 1958). Thus, factor analysis indicates
both groupings and contribution percentage to total
variation in the dependence structure. The array of
communality, the amount of variance of a variable
accounted by the common factors together, was
estimated by the highest correlation coefficient in each
array as suggested by Seiller and Stafford (1985).

Scoring scale for selection criteria

The scoring scale for each trait was calculated as
described by Thiry et al. (2016). For each trait the
minimum and maximum values among genotypes
were identified. The difference of these two values
gives the range of the scale for each trait. This range
is divided into ten parts and each part has a score
from 1 to 10. Therefore, each part represents 10%,
20%, ... or 100% of the range  value.  However generally
some traits i.e., grain yield their high values are
desirable (Class 1), while some traits i.e., phonological
traits their low values are desirable (Class 2). For class
2 of traits, we have inverted the value of traits, so a
high value obtained with the original equation will
receive a lower score. This allows the two classes of
traits to have the same scale, where a high score will
always mean a ‘good’ genotype. For example, a score
value of 2 is assigned for the traits in Class 1 for all
the values within 10-20% of the range and 80-90% of
the range for traits in Class 2. A  tool developed in
Microsoft Excel has been created to assign a score
to each  value.

A further combination of the score traits was
named as mean score index (MSI):

1 2 3s s s nsX X X X
MSI

N

   




where Xis is the scoring scale for ith selection criterion
and N is number of selection criteria.

Prior to pooling of data over years, the
homogeneity of error variances was checked. Then
statistical analyses were done using the pooled data
of three years for physiological and agronomical traits
evaluated under drought in three growing seasons,
using IBM SPSS Statistics 19.

Results

Weather condition

Rainfall distribution pattern remarkably varied among
cropping seasons. However, rainfall was contrasting
in the cropping seasons, and hence, the genotypes
were exposed to drought stress, which is the most
limiting factor in moderate cold rainfed areas of Iran.
The all three seasons were characterized by lower
rainfall levels (342.5, 302.9 and 394.3 mm, respectively
in 2010-11, 2011-12 and 2012-13 seasons) than the
average long-term rainfall in the station (425 mm
rainfall), where the crops experienced severe droughts
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with remarkable respective decreases in rainfall of 82.5,
122.1 and 30.7 mm relative to average long-term
rainfall. 2012-13 cropping season with rainfall amount
of 394.3 mm was relatively close to average long-
term of the station. No marked variation in temperatures
was observed across cropping seasons, although the
2012-13 season with higher average temperature was
warmer than other two seasons in winter.

Variance components, variability and heritability
of traits

The results of combined ANOVA for grain yield,
phenological, physiological and agronomic traits are
given in Table 1. ANOVA indicates that the year effect
was significant for all traits. The genotype effect for
most traits was significant, but not for relative water
loss, relative growth rate, chlorophyll fluorescence and
number of grain per spike. Genotype and year
interactions were significant for all traits except for
CTD.

Estimates of variability for the studied traits
within and between years are given in Table 2. The
traits with the least changes in quantity across years
were Fv/Fm followed by RWC, SL, DH and DM, while
those with the highest changes in quantity were PL
followed by YLD, RGR, CTD and SC. The results also
revealed that the trait values from one year to another
were not constant and showed large fluctuations. Some
traits showed positive response to a season and
negative to another season. The traits including TKW,
RWL, RWC, SC and PL showed the highest
performance in 2012-13 season (severe drought), while
the traits with the least performance were PH, YLD,
RGR, and FL. The traits with the best performance in
2010-11 (moderate drought) were SPAD reading, CTD,
FL and lesser RWL, showing that they can be regarded
as drought-adaptive traits, while the TKW and NGPS
were more sensitive to drought. In 2011-12 (mild
drought) the drier traits with enhanced performance
were YLD, RGR, Fv/Fm, SL and NGPS.

The highest coefficient of variation (CV) was
found for CTD followed by RWL, SC and PH. The least
value was shown by DM followed by DH, Fv/Fm and
RWC. The broad-sense heritability was the highest
for plant height (90.8%), while Fv/Fm (31.6 %) and
RGR (32.5%) were estimated as having the lowest
broad-sense heritability. Plant height was found to be
the most important constant character, while Fv/Fm
and RGR were estimated to be the most affected traits
over the three years in this study.

Path coefficient analysis

The correlation coefficients were partitioned into direct
and indirect effects by path analysis (Table 3). Results
indicated PH (0.65) fallowed by Fv/Fm (0.54), SL
(0.47), RWC (0.46), NGSP (0.35) and TKW (0.30) had
the highest positive direct effects, while DM (-0.55)
and PL (-0.54) had the highest direct and negative
effects on yield productivity.

The indirect influence of plant height through PL
was positive, while through RWC and SL was negative.
The indirect influence of days to maturity through DH
was negative, while through Fv/Fm was positive and
high. However, PL, SL, RWC and DM had the highest
indirect effects on grain yield through plant height.
Based on the path coefficient results, high residual
(0.49) was observed for the data.

Stepwise multiple linear regression (SMLR)

The SMLR used to determine the variables accounting
for the majority of total yield variability. Results of
SMLR showed that the SPAD reading, Fv/Fm and SL
with R square of 65.1%, had justified the maximum of
yield changes (Table 4). Therefore the following
equation can be obtained:

YLD = –6898.6 + 36.2*(SPAD) + 7945.8*(Fv/Fm)
+ 120.3*(SL)

The significant R square in the model indicates
the effectiveness of these traits to increase grain yield.
With respect to the positive and significant regression
coefficients of the above mentioned traits, it could be
stated that increasing the amount of these traits will
cause an increase in the yield. The other variables
were not included in the analysis due to their low
relative contributions.

Principal component analysis

According to PCA, an increase in the number of
components was associated with a decrease in eigen
values (Table 5). This trend reached its maximum at
three factors. Accordingly, it is reasonable to assume
that the PCA had grouped the estimated wheat
variables into five main components captured for 74.2%
of the total variation of grain yield. The first component
(PC1) accounted for about 25.65% of the variation in
grain yield, while PC2 and PC3 accounted for 18.8%
and 13.8%, respectively. The results showed that PC1
positively correlated with PH, SL and CTD. The PC2
correlated moderately with PL and Fv/Fm and the PC3
associated with RWL and RGR. The next two PCs
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Table 1. Variance components for agronomic and physiological traits for 25 durum genotypes tested in three cropping
seasons

Traits Mean squares

Year (Y) Block/Y Genotype (G) GxY Error
(

2 2
1e Yr  )

2
1e (

2 2 2
2e GY Gr ry    ) (

2 2
2e GYr  )

2
2e E(MSS) #

Grain yield (YLD) 51966563.1** 572029.1 286079.1** 144753.3** 85621.8
Plant height (PH) 15704.6** 125.1 941.3** 88.8** 14.1

Thousand kernel weight (TKW) 4225.4** 6.0 19.8** 10.2** 2.6
Spike length (SL) 8.2** 0.3 2.4* 1.3** 0.6
Peduncle length (PL) 4966.9** 7.8 19* 13.2** 1.5

Flag-leaf length (FL) 240.7** 4.7 15.6* 10.4** 1.5
Number of grain per spike (NGPS) 354.0** 20.5 65.3ns 61.5** 4.5
Days to heading  (DH) 4233.0** 14.4 36.7** 19.2** 6.1

Days to maturity (DM) 4854.5** 15.3 26.7** 18.8** 6.3
Relative growth rate (RGR) 103.2** 2.0 0.5ns 0.5** 0.2
Relative water loss (RWL) 0.797** 0.01 0.031ns 0.026** 0.006

Relative water content (RWC) 216.1** 17.4 58.7* 31.4** 10.4
Chlorophyll content (SPAD-reading) 685.3** 20.5 82.5** 18.9** 7.7
Canopy temperature dispersion (CTD) 87.8** 10.2 9.5** 4.2ns 4.2

Chlorophyll fluorescence (Fv/Fm) 0.024** 0.001 0.003ns 0.004** 0.001
Stomatal conductance (SC) 16318.1** 45.3 201.0* 135.9** 10.1
#E(MSS): Expectation of mean sum of squares; *,**Significant at 5% and 1% level of probability, respectively; ns: non-significant

Table 2. Descriptive statistics for grain yield and agronomic, phonologic and physiological criteria of 25 durum wheat
genotypes across three cropping seasons

Traits 2010-11 2011-12 2012-13 Overall
(Moderate stress) (Mild stress) (Severe stress)

Average Range Average Range Average Range Reduction CV% H2b
(%)*

YLD 1840.0 1345-2809 2360.0 866.7-3007 773.6 300.3-1567.0 67.2 12.3 53.6

PH 82.0 62-109 65.0 50.0-95.0 50 30.0-85.0 39 16.5 90.8
TKW 18.8 15.5-23 25.5 21.1-33.6 34.1 30.0-39.8 44.9 7.19 60.8
SL 6.9 5.4-9.2 7.4 6.4-9.2 7.3 5.5-11.5 6.8 10.3 54.3

PL 10.2 6.0-18.0 7.0 3.2-20.2 13.46 7.89-22.41 48 14.4 56.1
FL 19.1 15.4-24.3 17.6 14.0-32.8 15.4 11.3-19.0 19.4 9.85 56.3
NGPS 30.0 19-44 35.0 22.0-44.0 26.37 15.9-35.6 32.7 10.7 49.1

DH 194.0 180-200 181.0 176-186 181 176-183 6.7 1.02 59.0
DM 229.0 213-234 213.0 210-222 218 216-223 7 0.68 49.4
RGR 3.2 1.8-4.5 4.2 2.0-5.4 1.5 0.6-2.6 64.3 11.6 32.5

RWL 0.194 0.091-0.457 0.323 0.098-0.978 0.42 0.282-0.588 53.8 24.9 47.2
RWC 72.3 63.3-79.5 73.5 55.5-92.7 76.2 67.2-83.9 5.1 4.4 58.1
SPAD 54.3 38.9-63.7 38.0 30.8-45.4 41.5 37.2-47.1 30 6.22 77.7

CTD 3.2 1.8-4.5 1.2 0.1-4.7 2.4 0.4-5.3 62.5 31.3 48.7
Fv/Fm 0.745 0.716-0.809 0.779 0.704-0.845 0.768 0.70-0.83 4.4 2.04 31.6
SC 23.6 10.2-33.8 20.6 15.7-42.9 49.7 26.9-74.3 58.6 18.8 57.8

For trait codes see Table 1; *Calculated from yield data of two extreme years



518 Reza Mohamamdi et al. [Vol. 77, No. 4

showed low correlations with the studied
traits. Traits which significantly correlated
with the first three eigen vectors were the
variables with the greatest variability.
Thus based on the first three PCs, the
traits PH, SL, CTD, PL, Fv/Fm, RWL and
RGR shown to be the important traits
affecting greatly grain yield. However, high
correlation between PC1 and a trait
indicates that the trait is associated with
the direction of the maximum amount of
variation in the dataset.

Factor analysis

According to factor analysis, the five
factors explained 74.2% of the total
variance observed in the plant traits
(Table 6). Communality data explained by
five factors were found to be the highest
for PH (92.3%) and the lowest for FL
(50.8%). However, PH, DH, DM, RWC and
PL had the highest communality and
consequently the high relative contribution
in the productivity. Factor 1 captured for
19.2% of total variation and comprised
plant height and spike length with positive
loadings and SPAD reading and RWC with
negative loadings. Factor 2 explained
14.6% of the total variance and comprised
PL and Fv/Fm with the highest and
positive loadings and DH and DM with
the highest negative loading effects. The
third factor explained 14.2% of the total
variance and consisted of RWL and RGR
with positive loadings and NGPS with
negative loadings. Factor 4 explained
14.0% of the total variation and comprised
FL with positive loadings, and PH with
negative loading. The last factor explained
12.2% of the total variation and consisted
of TKW with positive and SC with
negative loadings. Based on the results,
the five extracted factors, respectively,
are representative for plant height, heading
date, water loss, flag-leaf length and 1000-
kernel weight.

In Table 7 the most important traits
identified by each statistical procedure are
presented. The results verified that at
least three traits are required to explain
the variation of grain yield in durum

T
ab

le
 3

.
D

ire
ct

 a
nd

 in
di

re
ct

 g
en

et
ic

 e
ffe

ct
s 

vi
a 

va
rio

us
 p

at
hs

 o
f 

15
 a

gr
o-

ph
ys

io
lo

gi
ca

l t
ra

its
 o

n 
th

e 
gr

ai
n 

yi
el

d 
of

 2
5 

du
ru

m
 w

he
at

 g
en

ot
yp

es
 a

cr
os

s 
ye

ar
s

T
ra

its
D

ire
ct

D
H

D
M

P
H

T
K

W
G

R
R

W
L

R
W

C
S

P
A

D
C

T
D

F
v/

F
m

S
C

S
L

P
L

F
L

N
G

P
S

ef
fe

ct

D
H

0.
02

0.
02

0.
00

–0
.0

1
0.

00
0.

00
0.

00
–0

.0
1

0.
00

–0
.0

1
–0

.0
1

0.
00

–0
.0

1
0.

00
0.

00

D
M

–0
.5

5
–0

.4
1

–0
.2

1
0.

07
–0

.0
8

0.
05

0.
07

0.
13

–0
.0

5
0.

24
0.

33
–0

.0
8

0.
16

–0
.1

2
0.

02

P
H

0.
65

0.
06

0.
25

0.
15

0.
17

–0
.1

3
–0

.4
8

–0
.2

6
0.

16
–0

.2
0

–0
.2

3
0.

30
0.

34
0.

19
–0

.0
5

T
K

W
0.

30
–0

.0
7

–0
.0

4
0.

07
–0

.0
2

–0
.0

5
–0

.0
7

–0
.0

3
0.

04
0.

05
0.

01
0.

08
0.

15
0.

06
–0

.1
2

R
G

R
–0

.2
8

–0
.0

2
–0

.0
4

–0
.0

7
0.

02
–0

.1
3

0.
04

0.
10

–0
.0

9
0.

05
0.

03
–0

.0
8

0.
02

0.
00

0.
13

R
W

L
0.

12
–0

.0
2

–0
.0

1
–0

.0
2

–0
.0

2
0.

06
0.

04
0.

01
–0

.0
1

0.
00

0.
01

–0
.0

1
–0

.0
2

–0
.0

2
–0

.0
2

R
W

C
0.

46
–0

.0
2

–0
.0

6
–0

.3
4

–0
.1

1
–0

.0
7

0.
17

0.
18

–0
.0

8
0.

08
0.

08
–0

.1
2

–0
.1

7
–0

.1
1

–0
.0

6

S
P

A
D

0.
26

–0
.1

0
–0

.0
6

–0
.1

0
–0

.0
2

–0
.0

9
0.

03
0.

10
–0

.1
2

0.
02

0.
03

–0
.1

5
–0

.0
2

–0
.1

2
0.

10

C
T

D
0.

20
0.

00
0.

02
0.

05
0.

02
0.

06
–0

.0
2

–0
.0

4
–0

.1
0

0.
01

0.
02

0.
14

0.
06

0.
01

–0
.0

7

F
v/

F
m

0.
53

–0
.2

5
–0

.2
3

–0
.1

6
0.

09
–0

.1
0

0.
00

0.
10

0.
04

0.
03

0.
03

0.
06

0.
16

0.
07

0.
06

S
C

–0
.1

5
0.

04
0.

09
0.

05
0.

00
0.

02
–0

.0
1

–0
.0

3
–0

.0
2

–0
.0

1
–0

.0
1

0.
01

–0
.0

1
–0

.0
1

0.
00

S
L

0.
47

0.
01

0.
07

0.
22

0.
13

0.
13

–0
.0

4
–0

.1
2

–0
.2

8
0.

33
0.

06
–0

.0
3

0.
22

0.
14

–0
.1

7

P
L

–0
.5

4
0.

25
0.

16
–0

.2
9

–0
.2

6
0.

04
0.

09
0.

20
0.

05
–0

.1
6

–0
.1

6
–0

.0
4

–0
.2

5
–0

.1
4

0.
01

F
L

–0
.1

2
–0

.0
2

–0
.0

3
–0

.0
4

–0
.0

2
0.

00
0.

02
0.

03
0.

06
–0

.0
1

–0
.0

1
–0

.0
1

–0
.0

4
–0

.0
3

0.
00

N
G

P
S

0.
35

0.
02

–0
.0

1
–0

.0
3

–0
.1

4
–0

.1
7

–0
.0

7
–0

.0
5

0.
13

–0
.1

3
0.

04
0.

00
–0

.1
2

–0
.0

1
–0

.0
1

F
or

 tr
ai

t c
od

es
 s

ee
 T

ab
le

 1
.



November, 2017] Traits associated with high yield in durum 519

genotypes. However, although the statistical
procedures were varied in identify the number of
required traits for selection, based on the different
statistical procedures the chlorophyll fluorescence (Fv/
Fm), spike length (SL), SPAD reading, peduncle length
and heading date can be considered as the most
contributors to yield productivity in durum wheat under
drought conditions.

Table 4. The regression coefficient (b), standard error (SE), T-value and probability of the estimated variables in predicting
durum wheat grain yield by the multiple linear regression analysis technique

Traits Regression slope   t-value Collinearity statistics

b SE Value Probe Tolerance VIF

Constant –6898.6 1388.1 –4.97 0.000    

SPAD 36.2 11.9 3.041 0.006 0.628 1.592

Fv/Fm 7945.8 1734.3 4.582 0.000 0.954 1.048

SL 120.3 44.8 2.686 0.014 0.623 1.606

Model R2= 65.1%; SE: standard error; VIF: variance inflation factor
For trait codes see Table1.

Table 5. The correlation coefficients between the traits
and the eigenvector values for 25 durum wheat
genotypes across three years

Traits Components

PC1 PC2 PC3 PC4 PC5

DH 0.254 –0.821 –0.086 0.352 0.022

DM 0.420 –0.774 –0.096 0.021 0.286

PH 0.795 –0.043 –0.30 –0.435 –0.10

TKW 0.353 0.505 –0.095 –0.093 0.477

RGR 0.409 –0.161 0.672 –0.317 –0.178

RWL –0.229 –0.027 0.698 –0.331 0.013

RWC –0.632 –0.037 0.452 0.328 0.338

SPAD –0.766 0.111 –0.192 –0.35 0.128

CTD 0.605 0.236 0.352 0.23 –0.164

Fv/Fm –0.167 0.620 –0.038 0.264 0.349

SC –0.283 0.467 0.158 0.359 –0.585

SL 0.773 0.264 0.208 0.187 0.031

PL 0.447 0.714 –0.271 –0.208 0.02

FL 0.477 0.076 –0.24 0.465 0.04

NGPS –0.383 –0.116 –0.675 –0.015 –0.296

E.V. 3.85 2.83 2.08 1.31 1.06

Prop. 25.65 18.84 13.85 8.73 7.09

V.C. (%) 25.65 44.5 58.35 67.07 74.17

For trait codes see Table 1; E. V. = Eigen Value; Prop. =
Proportion; V. C. = Variance Cumulative

Validation the methodology of scaling scores

To validate the scaling score for selection criteria, the
scores tested against their original value from each
selection criteria. Table 8 shows the Pearson’s
correlation coefficients between the score assigned
to selection criteria and the original traits. The

Table 6. Rotated factor loadings and communalities for
the estimated variables of 25 durum wheat
genotypes across three years

Traits Factors TKW

PH HD WL FLL TFW Commu-
nalities

PH 0.795 –0.043 –0.300 –0.435 –0.100 0.923

SL 0.773 0.264 0.208 0.187 0.031 0.747

SPAD –0.766 0.111 –0.192 –0.350 0.128 0.775

RWC –0.632 –0.037 0.452 0.328 0.338 0.827

CTD 0.605 0.236 0.352 0.230 –0.164 0.626

FL 0.477 0.076 –0.240 0.465 0.040 0.508

DH 0.254 –0.821 –0.086 0.352 0.022 0.870

DM 0.420 –0.774 –0.096 0.021 0.286 0.867

PL 0.447 0.714 –0.271 –0.208 0.020 0.826

Fv/Fm –0.167 0.620 –0.038 0.264 0.349 0.606

TKW 0.353 0.505 –0.095 –0.093 0.477 0.624

RWL –0.229 –0.027 0.698 –0.331 0.013 0.651

NGPS –0.383 –0.116 –0.675 –0.015 –0.296 0.704

RGR 0.409 –0.161 0.672 –0.317 –0.178 0.777

SC –0.283 0.467 0.158 0.359 –0.585 0.794

LR 2.88 2.20 2.12 2.10 1.83

Factor 19.17 14.64 14.15 14.01 12.20  
variance (%)

For trait codes see Table 1; PH = Plant height; HD = Heading
date; WL = Water loss; FLL = Flag leaf length; TKW = 1000-
kernel weight; LR = latent roots
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correlation coefficient between the score heading date
and its original trait value is highly negative (r=–0.97
P<0.01), as the score scale has been inverted. On

the other hand, the correlation coefficients between
the original values for plant height, SPAD reading, Fv/
Fm, spike length and peduncle length , were highly
significant (P<0.01). These high correlation coefficient
values demonstrate that the score traits can be used
as a surrogate of their original trait  value.

Table  9 shows the score index of selection
criteria and the mean score index (MSI) for 25 durum
wheat genotypes. The data used in this table are a
mean for each genotype from three cropping seasons.

Table 7. Traits identified as most influence in durum
wheat grain yield under drought condition by
each applied statistical model. In regression
model the “most important traits” were identified
based on significance level, while in three other
models based on a cut-off value

Traits Statistical model

Regression Path Principal Factor
analysis coefficient component analysis

analysis analysis

DH 

DM

PH   

TKW

RGR

RWL  

RWC 

SPAD   

CTD 

Fv/Fm    

SC

SL    

PL  

FL

NGPS 

Model R- 65.1 51 74.2 74.2
square (%)

For trait codes see Table 1.

Table  8. Pearson’s correlation coefficients between the
score traits and their original values

PH SPAD Fv/Fm SL PL DH

Class 1

PHs 0.98** –0.46* –0.30 0.48* 0.46* 0.18

SPADs –0.40* 0.99** 0.08 –0.54** –0.06 –0.40*

Fv/Fm –0.34 0.10 0.99** 0.05 0.26 –0.44*

SLs 0.44* –0.61** 0.09 0.98** 0.42* 0.05

PLs 0.54** –0.08 0.31 0.46* 0.99**–0.49*

Class 2

DHs –0.01 0.30 0.46* –0.05 0.48*–0.97**

 *, ** significant at 5% and 1% level of probability, respectively.

Table 9. Scores of genotypes for each selection criteria
and the mean score index (MSI) for the 25 durum
wheat genotypes during 2010-13 cropping
seasons

Geno- Class 1 Class 2 MSI
types

Score Score Score Score Score Score
PH SPAD Fv/Fm SL PL HD

G1 3 6 5 3 4 3 24

G2 1 7 10 4 3 2 27

G3 4 10 6 2 9 8 39

G4 3 5 5 3 4 6 26

G5 2 5 6 5 4 2 24

G6 3 10 6 3 4 3 29

G7 1 4 6 3 2 3 19

G8 3 5 9 4 8 4 33

G9 2 8 5 3 1 3 22

G10 3 7 5 3 4 3 25

G11 3 6 6 4 6 3 28

G12 2 8 6 2 5 6 29

G13 2 7 8 4 7 7 35

G14 1 6 10 1 4 5 27

G15 3 7 6 3 6 7 32

G16 1 7 2 1 2 3 16

G17 3 6 6 3 2 2 22

G18 1 4 5 3 2 3 18

G19 3 5 5 3 3 2 21

G20 8 4 7 5 7 5 36

G21 8 6 3 5 10 3 35

G22 3 7 9 4 6 10 39

G23 8 3 9 4 9 5 38

G24 10 4 1 2 2 1 20

G25 8 1 4 10 7 3 33

For trait codes see Table 1
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The 25 score indices provide an illustration of small
differences between plant height, peduncle length and
spike length. On the other hand, SPAD reading and
Fv/Fm were very similar, but both were slightly different
from plant height, peduncle length and spike length.
The score index of heading date in class 2 was
generally similar to those in plant height, peduncle
length and spike length.

According to MSI, the first six top ranking
genotypes were G3, G22, G23, G20, G13 and G21
showing that these genotypes possessing some
drought-adaptive traits. The superior performance of
these breeding lines under drought stress was
associated with better the above mentioned selection
criteria. A positive correlation between MSI with
genotypic mean yield was observed (P<0.01) indicating
selection based on the traits involved in MSI produced
the higher yield under drought environments over the
years.

Discussion

The genotype by year interaction was significant for
most of the evaluated traits indicating that the relative
performance of the genotypes changed across the
cropping seasons. The multiple statistical procedures
which have been used in this study showed that they
differ in number of traits affecting grain yield. However,
information from this study would be valuable to durum
breeder for developing high yielding cultivars.

The four different statistical techniques applied
in this study showed that the chlorophyll fluorescence
(Fv/Fm), spike length (SL), SPAD reading, peduncle
length and heading date were the most important yield
traits to be considered under drought conditions. Thus,
high yield productivity under drought conditions of Iran
can possibly be obtained by selecting breeding
materials for these traits. Dogan (2009) found that direct
and positive effect of plant height on grain yield in
durum wheat. Baranwal et al. (2012) revealed that
grains per spike, spike length and 1000-grain weight
exhibited the maximum positive direct effect. However,
the above results also permit for further study of
evolving desirable materials of durum wheat. The UMRL
between grain yield and related agronomical and
physiological (SPAD and Fv/Fm) traits indicated that
under drought conditions, the contribution of the
physiological traits was greater than the agronomical
traits. Chlorophyll content was positively correlated
with grain yield. Drought increases senescence by
accelerating chlorophyll degradation leading to a
decrease in leaf area and photosynthesis. There is

evidence that stay green phenotypes with delayed leaf
senescence (higher SPAD index) can improve their
performance under drought conditions (Lopes and
Reynolds 2012). In wheat, genotypic variability has
been detected in chlorophyll content as well as in the
rate of leaf senescence (higher SPAD index) during
grain-filling (Harris et al. 2007; Lopes and Reynolds
2012; Mohammadi et al. 2015).  In durum wheat stay
green genotypes growing under glasshouse conditions
remained green for longer and had higher rates of leaf
photosynthesis and seed weight (Spano et al. 2003).

The overall results reflect the importance of the
five traits (Fv/Fm, SL, PL, SPAD, and heading date)
in durum wheat selection for breeding programs. del
Pozo et al. (2016) found a positive relationship between
SPAD index and grain yield in durum wheat. It is likely
that the breeding lines and new cultivar employed a
drought escape strategy to maintain higher yield under
the stress condition by shifting its flowering time frame
(Table 9). Thus, these genotypes avoided, at least to
some extent, the occurrence of the most severe
drought (May to early June) during the most sensitive
stage. However, selection on flowering time to enhance
drought resistance is possible (Kenney et al. 2014).

The results indicated that indirect selection based
on the components of yield may lead to different
genetic gain in different levels of drought stress
conditions. These results were also confirmed with
relative efficiency between drought stress conditions
which was higher at mild stress condition than severe
drought stress condition. However, considerable
genetic variation was observed for yield productivity,
its components and persistency under variable drought
seasons. This indicates that there is high potential for
genetic improvement of this genetic materials. Low
heritability for Fv/Fm suggests that indirect selection
based on components of grain yield such as heading
date, which had moderate heritability, would be more
effective. However, selection for higher plant height,
spike length, peduncle length, SPAD and heading date
are associated with higher yield productivity in durum
wheat under drought conditions. The path coefficients
analysis model explained almost half of total variation
(51%) in grain yield productivity. Therefore, some other
component traits can be included to enhance utilization
of variation in yield. The analysis model explained
about 65% of total variability in grain yield. In compared,
the two multivariate procedures of PCA and factor
analysis explained more than 74% of total variation in
grain yield, indicating the potential of PCA and FA for
selection purposes. Based on this, the breeder could
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use these multivariate selection methods by first
determining the combination of traits that constitute
an ideal plant. However, PCA and FA may be
considered important if their associated scoring
coefficients are of relative magnitude or sign consistent
with breeding objectives. It has been shown that these
statistical procedures can be successfully utilized in
cereals (Walton 1972; Lee and Kaltsikes 1973;
Godshalk and Timothy 1988; Cagirgan and Yildirim
1990).

The scaling score of selection criteria allowed
arithmetic operations to create the MSI, which
expresses yield performance under drought stress as
a simple score scale value. This expression of yield
has demonstrated that yield under stress can usefully
be perceived as a function of two major crop
characteristics, the resilience capacity and the
production capacity (Thiry et al. 2016). The use of
this index indicated that the some breeding lines
showed a ‘good’ performance due to possessing high
scaling scores of selection criteria. However the
scaling score approach for the selection criteria  was
a useful method for discriminating some genotypes
with late phenology, which actually could present better
adaptive/tolerant traits to endure the stress although
reducing their yield more, compared with early
genotypes, and consequently showing a lower
performance.

In conclusion, the study has shown the existence
of considerable variation among the genetic materials
for plant traits under drought conditions. The different
statistical procedures which have been used in this
study suggested the plant height, spike length,
peduncle length, Fv/Fm, SPAD reading and heading
date as the best indirect selection criteria for genetic
improvement of yield in early generations under drought
condition. However, selection of the best genotypes
through these traits which have higher heritability than
grain yield especially in early generations and
associated with these traits have been emphasized
for genetic improvement of grain yield. However, these
make breeding for drought resistance particularly slow
and difficult. Multivariate selection techniques (PCA
and FA) by justifying the high portion of variability in
grain yield were found to be more efficient for
developing proper models for indirect selection in
durum wheat.
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