Short Communication

Selection indices and *per se* performance of morphologically diverse anthurium genotypes

Asish K. Binodh¹ and P. Maya Devi

Department of Plant Breeding and Genetics, College of Agriculture, Vellayani Thiruvananthapuram 695 522 (Received: July 2004; Revised: February 2005; Accepted: March 2005)

Anthurium (*Anthurium andreanun* Linden.) is currently being promoted as export oriented cut flower crop. The genus is native of tropical zones of central and south America. It is a tropical plant of great beauty grown for its colourful long lasting flowers and handsome foliage. The warm humid tropical climate of Kerala in South India is congenial for its wide spread cultivation. Basic information on the breeding behaviour of anthurium to improve the existing types and varieties are found wanting. Moreover, selection of genotypes based on suitable index is highly efficient in any breeding programme. Selection index aids the breeder in indirect selection. Hence, the present study was under taken with a view to study the various morphological characters and selection index for the improvement of anthuriums. The 50 genotypes of anthurium showing variation in spathe colour, shape, size and other commercially valuable morphological characters were utilized for the study during 2001-2002 at the Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, Thiruvananthapuram. The 17 characters under study were plant height, internode length, suckering ability, leaf area, days from emergence to maturity of leaves, days from emergence to maturity of leaves, number of spadices per plant per year, candle length, inclination of candle, number of flowers per candle, life of spadix, days to initiation of female phase, duration of female phase, days of interphase, duration of male phase, pollen fertility and anthocyanin content. Total anthocyanin content was estimated as per the procedure

Table 1. Per se performance of 17 Characters in anthurium genotypes

SI.	Characters	Mean	Range	Genotypes		SEm
No.				Low	High	
1.	Plant height (cm)	41.28	22.17 to 64.80	$LJ \times MW$	LR×PR	2.695
2.	Internode length (cm)	1.56	0.97 to 2.57	$MW \times PR$	$MW \times FR(1)$	0.739
3.	Suckering ability	1.88	1.00 to 3.00	MW imes DT	$LR \times FR$	0.274
4.	Leaf area (cm ²)	138.70	41.32 to 323.70	$LJ \times MW$	$MW \times FR(1)$	7.589
5.	Days form emergence to maturity of leaves	27.56	15.33 to 41.00	OG×LR	DT imes FR	0.397
6.	Days from emergence to maturity of inflorescence	30.00	16.67 to 37.67	NO×LR (1)	$MO \times KR(1)$	0.319
7.	Number of spadices/plant/year	4.38	3.00 to 7.00	$PR \times DT$	$KO \times DT$	0.492
8.	Candle length (cm)	4.71	3.13 to 9.17	$FR \times MW$ (2)	$FR \times MW$ (1)	0.250
9.	Inclination of candle to spathe (degrees)	43.10	10.67 to 89.33	$PR \times MO$	$MO \times KR(1)$	0.754
10.	Number of flowers/candle	328.81	149.67 to 689.33	$LJ \times MW$	$MW \times FR(1)$	6.046
11.	Life of spadix (days)	77.08	48.33 to 124.67	$KO \times DT$	MO×KR (1)	0.889
12.	Days to initiation of female phase	6.10	3.0 to 8.0	FR× CR (1) & LR×FR	KR×CR	0.210
13.	Duration of female phase (days)	6.10	3 to 11	OG×KR	$MW \times FR(1)$	0.169
14.	Days of interphase	6.49	2 to 11	PR×KR	$MO \times KR$ (2)	0.221
15.	Duration of male phase (days)	8.29	4 to 12	$MW \times DT$	$MW \times PR$	0.290
16.	Pollen fertility (%)	24.24	7.03 to 50.80	$PR \times FR$ (2)	$LJ \times MW$	0.578
17.	Anthocyanin content (mg/g)	234.86	26.81 to 710.79	FR×KR	PR × LR (3)	4.007
			120.84	OG × DT (Obaki)		

SEm : Standard Error of Mean

of Rangana (1977) (1). The various genotypes were discriminated for 17 characters using the selection index developed by Smith (1947) (2) based on discriminate function of Fisher 1936 (3).

Per se performance of Anthurium genotypes for 17 characters are given in Table 1. Short and downward curving candle with an angle less than 45° is an extremely desirable character for commercial anthurium varieties. The inclination ranged from 10,670 in PR \times MO to 89.330 in MO \times KR (1) with mean value of 43.100. Initiation of female phase was identified by the slight projection of stigmas and presence of viscous exudates in the candle. The study clearly highlighted the protogynous nature of this species. The number of days in female phase was recorded as 3 days in OG \times KR to 11 days in MW \times FR (1). Interphase between female and male phase was marked by drying up of stigmatic droplet. The character ranged from 2 days in PR \times KR to 11 days in MO \times KR (2). Male phase which was marked by the extrusion of anthers starting from the base of the candle, proceeding towards tip, lasted for about 4 days in MW \times DT to 12 days in MW \times PR with a mean of 8.29 days.

High pollen fertility was recorded for the genotypes LJ × MW (50.8%). Pollen fertility was minimum for the genotypes PR × FR (2) (7.03%). Low pollen fertility in *A. andreanum* indicated its hybrid nature. Anthocyanin contributes various colours to the spathe. Anthocyanin content ranged from 26.81 mg/g in FR × KR (pink spathe) to 710.79 mg/g in PR × LR (3) (maroon spathe). Genotype OG × DT showed double colored spathe (Obaki) with an anthocyanin content of 120.84 mg/g.

The selection index values (descending order) and genetic gain are presented in Table 2. High selection index values were recorded by the genotype $LR \times DT$, followed by $FR \times MW$ (1), $PR \times LR$ (3), $MW \times FR$ (1) and $HR \times LW$ and so on. Least index values were recorded by the genotype $FR \times KR$. High selection index values indicates that there is scope for improvement of the characters for a particular genotype.

Genetic gain worked out reveals that if the parents are selected based on selection index values, for crop improvement 45% genetic gain can be expected in the next generation (Table 2). From the results, the genotypes LR \times DT, FR \times MW (1), PR \times LR (3), MW \times FR (1) and HR \times LW with high selection index values indicated that the desirable characters which are of economic importance could be exploited. These genotypes can be utilized in breeding programme.

 Table 2.
 Selection index of 50 genotypes of anthurium arranged in descending order

SI. No.	Genotypes	Selection index
1.	LR×DT	4690
2.	$FB \times MW(1)$	4501
3. 1	$PR \times LR(3)$	4497
4.	$MW \times FB(1)$	4485
5.	HR×LW	4244
6.	PB×DT	3961
7.	$PB \times LB(1)$	3851
8.	PR×OG	3713
9.	FB×LB	3550
10.	LB×FB	3399
11.	$PB \times FB$ (2)	3389
12	$MO \times KB(1)$	3372
13	MW × DT	3302
14	MOXIB	3283
15	KB×CB	3248
16	$PB \times FB (4)$	3174
17	$PB \times IB(2)$	3127
18	$TB \times MW$	3111
19	$NO \times IB(2)$	3048
20	$PB \times FB (1)$	3031
21		3007
22	NOXDT	2997
22.	$MO \times KR (2)$	2002
20.	$PP \times FP$ (3)	2010
24.	$PR \sim MW$	2832
26		2765
20.		2760
28		2735
20.		2684
30		2634
31	NO × PB	2609
32	$NO \times IB (1)$	2604
33	$FR \times MW(2)$	2577
34		2524
35		2516
36	$ER \times CR (2)$	2310
37		2464
38	$MW \times FR(2)$	2458
30.	$KO \times CR$	2458
40	NO × CR	2430
40.	$EP \times DT (2)$	2400
41.	$ED \propto CD (1)$	2256
42.		2330
40. 44		2340
 15		2040
40. 46		2282
40. 47		2203
47. 70		21/0
40. 10		1922
49. 50		1857
40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50.	NO \times CR FR \times DT (2) FR \times CR (1) PR \times MO OG \times KR KO \times LR OG \times LR KO \times DT FR \times DT (1) LJ \times MW FR \times KR	2439 2414 2356 2341 2340 2296 2283 2176 1922 1859 1857

Genetic Gain, 0.45

References

- 1. **Rangana S.** 1997. Manual of Analysis of Fruit and Vegetable Products. Tata Me Graw-Hill Publishing Company, New Delhi, 634 p.
- 2. Smith C. A. B. 1947. Some examples of discrimination. Ann. Eug., 13: 272-282.
- Fisher R. A. 1936. The sampling distribution of some statistics obtained from no-linear equation. Ann. Eug., 9: 238-249.