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Abstract
aTL associated with zinc (Zn) and silicon (Si) content in
rice were identified and mapped on different rice
chromosomes. Based on interval mapping, a aTL was
detected for silicon content on chromosome three and
this aTL showed positive additive effect of 0.054 and
explained 12.9% phenotypic variation. Additionally, single
marker analysis results identified eighteen aTL for silicon
content on different chromosomes. Similarly, a total of
six aTL were identified for zinc content in rice seeds
using single marker analysis and mapped one each on
chromosome number 1, 4, 5, 8, 9 and 11. These aTL
individually explained 4.4% to 9.5% phenotypic variation.
The identified aTL were mapped on chromosome regions
having blast resistance aTL and candidate genes for blast
resistance. The overlapping of silicon and zinc aTL and
disease resistance loci on same chromosome regions
suggested their positive role in blast disease resistance.

Key words: Silicon, zinc, mapping, micronutrients and
quantitative trait loci.

Introduction

Micronutrients are essential for balanced nutrition in
plants and animals [1, 2]. Apart from this, some
micronutrients play vital role in biotic and abiotic stresses
tolerance in crop plants. They are essential in chlorophyll
synthesis, activation of enzymes responsible for growth
hormone production and carbohydrate transformation.
Silicon (Si) is a common constituent of plants, and its
mean content ranges from 0.3% to 1.2 % in the dry
matter of crop plants. The accumulation of silicon in
plants helps in disease resistance, amelioration of abiotic
stresses, and increased growth in some plants [3, 4].
The relationship between silicon content and blast
susceptibility in rice was first reported by Isenosuke
Onodera in 1917 [5] that stimulated further research
on role of silicon content in biotic stress tolerance.
Later on it was demonstrated that Si content in rice
straw and husks were inversely proportional to the
severity of blast disease and number of blast lesions

on leaves. In rice blast disease, Si mediated resistance
is conditioned by two mechanisms, one by forming a
physical barrier in leaf epidermis to impede fungal
penetration and the other is an active role in response
to pathogen attack [5]. Resistance through physical
barrier mechanism is conditioned by the existence of
a layer beneath the cuticle of rice leaves and sheaths.
This cuticle-Si double layer can impede Magnaporthe
grisea penetration and, consequently, decrease the
number of blast lesions on leaf blades [6]. In case of
active mechanism, momilactones is synthesized in
response to infection by Magnaporthe grisea, and
express their fungitoxicity within the zone of the infection
[7, 8].

Zinc is an essential trace element for
microorganisms, plants and animals. For humans,
sufficient zinc is needed to maintain health and plays
a role in many major metabolic pathways. In plants, it
is involved in a large number of enzymes, carbohydrate
metabolism and protein synthesis. In biotic and abiotic
stress tolerance, it plays critical roles in the defense
system of cells against reactive oxygen species (ROS),
and thus represents an excellent protective agent against
the oxidation of several vital cell components such as
membrane lipids and proteins, chlorophyll, SH-containing
enzymes and DNA. The cysteine, histidine and glutamate
or aspartate residues represent the most critical Zn
binding sites in enzymes, DNA-binding proteins
(Zn-Finger proteins) and membrane proteins. Pater et
al. [9], reported first time a cDNA clone Zinc-dependent
Activator Protein-1 (ZAP1), which is expressed during
pathogenesis. It has also been reported that WRKY
factors with zinc finger motif, comprise a large gene
family of plant-specific transcriptional regulators (WRKY6,
TRANSPARENT TESTA GLABRA2 gene and
AtWRKYIS) and control several types of plant. stress
responses like pathogen attack, mechanical stress, and
senescence in Arabidopsis [10-12]. Crop growth, quality,
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SI. Traits QTLs Chro. Flanking markers % LOD
No. variation score

Table 1. QTL associated with Leaf blast disease resistance
in rice DH population derived from the cross
between IR64 and Azucena identified by interval
mapping (Threshold LOD > 1.50)

Results and discussion

The three important components of partial resistance
(field resistance) to leaf blast disease in rice are Disease
Leaf Area (DLA), lesion number and lesion size [21].
The QTL associated with these components, which
were determined by single marker analysis and interval
analyses are presented in Table 1.

OLAV = Diseased Leaf Area (visual); DLAA = Diseased
Leaf Area actually computed by using 0-5 scale; DLAV1
= DLA scored visually on 34th day after sowing DLAA1
= DLA computed for the above data LSNN1 = No. of
susceptible lesions LSSI1 = Size (cm2) of susceptible
lesions; DLAV2 = DLA scored visually on 58th day
after sowing DLAA2 = DLA computed for the above
data LSNN2 = No. of susceptible lesions

3 RG 91 O-RZ 519 10.30 1.9830

5 RG 556-RZ 390 7.30 1.5550

4 RG 218-RG 19015.50 1.7510

7 RG 488-RG 769 19.40 2.0450

9 RG 451-RZ 404 24.80 2.9620

4 RG 218-RG 190 13.70 1.5400

7 RG 488-RG 769 18.60 1.9710

9 RG 451-RZ 404 19.20 2.2130

4 RG 218-RG 908 10.90 2.6320

4 RG 449-RZ 675 8.40 1.9490

8 A1 OK 250-RZ 617 7.40 1.7490

1 K5-W 1 14.00 2.0920

4 RG 143-RG 620 12.50 1.8330

1

2

1

1

3

2

3

DLAA2

LSNN2

LSSI1

DLAV1

DLAA1

LSNN1

DLAV2

4

1

2

3

6
7

5

cultivars) IR50 and HR12 were sown in order to trap
the fungal spores and to enhance the natural inoculum.
The observations on disease resistance and disease
susceptible parameters were recorded by both visual
scoring and actual infection. Disease reaction of each
genotype was scored using a 0-5 scale [20] after 34
and 58 days of sowing by both visual scoring and
actual infection, when all the border rows (susceptible
checks) were completely infected with blast disease.

Materials and methods

In the present study, a subset of ninety-three double
haploid lines (DHLs) developed from the cross between
IR64, an indica variety and Azucena, a traditional
aromatic japonica variety, was used in mapping silicon
(Si) and zinc (Zn) content in rice grain. Existing molecular
map of IR64 and Azucena, double haploid mapping
population with 254 markers data of both RFLP and
micro satellite markers was used in mapping the
micronutrients. Grain samples of each double haploid
line were analyzed to estimate the silicon content using
wet oxidation method and zinc content was estimated
using atomic absorption spectrophotometer [17]. The
micronutrient values were transformed with appropriate
statistical transformation procedure to have normal
distribution and then QTL analysis was done.
Identification and mapping of QTL was carried out by
interval mapping using Mapmaker/QTL software [18]
and also by single marker analysis [19].

The inheritance of most of the agronomically
important characteristics in rice is known and saturated
molecular maps have made it possible to dissect the
agronomically important traits. Extensive studies on
mapping major genes and quantitative trait loci (QTL)
have been reported for major agronomic traits in a
number of crop species [13-16]. However, till today no
research reports are available on mapping of
micronutrient content in rice. Therefore, considering the
vital role played by essential micronutrients in biotic
and abiotic resistance mechanism, present study was
conducted to identify and map the QTL associated with
silicon and zinc content in rice grains and to associate
their relationship with disease resistance. Consequently,
the micronutrient mapping knowledge can augment in
the development and identification of new genotypes
with enhanced micronutrient content. The identification
of QTLs responsible for micronutrient content and their
enhancement in rice can be an effective strategy to
address widespread dietary deficiency in human
populations as well as this will enhance the plants
resistance against biotic and abiotic stresses.

yield, and biotic and abiotic resistance may be affected
if anyone of the eight essential micronutrients are
lacking.

Evaluation for blast resistance was carried out in
the disease hot spot condition at Agricultural Research
Station (ARS), Ponnampet, Karnataka, India. The DH
lines, two parents and susceptible checks (IR50 and
HR12) were sown during wet season of 2004 in the
Uniform Blast Nursery. All the entries were sown in
single rows of 30 cm length with 5 cm row spacing
by following recommended cultural practices. All around
the blast nursery, two rows of spreaders (susceptible

Based on interval mapping results one QTL was
detected for silicon content in rice grains on chromosome
3 between RG191 and RZ678 RFLP markers at 2.475
LOD. This QTL showed no dominance effect but had
showed positive additive effect of 0.054 and it explained
12.9% phenotypic variation. Eighteen QTL were identified
using single marker analysis for silicon content on
chromosomes 2, 3, 4, 5, 6, 7 and 12. Maximum of
six QTL were identified and mapped for silicon content
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Fig. 1. Location of silicon and zinc specific QTL identified by interval mapping (MAPMAKER/QTL) and single marker analysis in
IR 64 x Azucena DH mapping popUlation of rice (map position of candidate genes/markers as in Rainalingam et aL, 2003)
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Table 3. QTL identified for zinc content in rice grain on
percent basis in IR64 x Azucena double haploid
mapping population using single marker analysis

Table 2. List of QTL's detected for silicon content in rice
grain on percent basis in IR64 x Azucena double
haploid mapping population using single marker
analysis

SI. QTLs Marker's Chromo R2 (% F Probabil
No. name some pheno- value ity

number typic values
variation}

Cluster of three QTL for silicon content identified by
single marker analysis and one QTL (RG191 and
RZ678) by interval mapping were mapped on
chromosome 3. This cluster of QTLs on chromosome
three could be considered as one QTL as one of the

Furthermore, overlapping of RG908 (DLAV2 with
both silicon and zinc), RZ390 (DLAA1) and RG556
(DLAA1) markers associated with silicon and zinc content
in rice grains with partial resistance to rice blast was
observed (Tables 1-3). The plausible reason for this
overlapping of QTLs could be due to trait correlations,
which may result from either pleiotrophic effect of single
genes or from the tight linkage of several genes
controlling the traits [24, 25]. The clustered regions on
chromosomes for QTLs associated with silicon and zinc
content is also known to harbor candidate genes for
blast disease resistance [26-28]. Likewise, remaining
QTL, for silicon and zinc content, were also mapped
on chromosome region associated with already known
rice blast and bacterial blight resistance regions. Based
on these findings and earlier evidences of shared plant
defense pathways and defense proteins for biotic
resistance, it shows that QTL for silicon and zinc
content have definite role in biotic resistance. It has
been demonstrated that Si content in rice straw and
husks were inversely proportional to the severity of
blast disease and number of blast lesions on leaves.
Its accumulation in plants helps in disease resistance,
amelioration of abiotic stresses, and increased growth
in some plants [3, 4]. Thus, silicon and zinc content
is indirectly involved in the abiotic and biotic resistance
mechanism of plants [10-12].

In conclusion, the initial identification of putative
QTLs associated with silicon and zinc content in rice
grain can be validated for their clear role in disease
resistance mechanism. Additional saturation of either
existing molecular map or development of new mapping
population for these micronutrient content and fine
mapping will help in unambiguous understanding of
overlapping of QTLs for silicon and zinc content and
their role in disease resistance.

Similar findings have been reported to show the
clustering of QTLs associated with partial disease
resistance to rice blast on chromosome 3, 4, 5 and 8
[22]. Analogous to this finding, two QTLs associated
with silicon content on chromosome five were also the
part of two flanking markers associated with the QTL
governing the DLA for partial blast resistance (Table
1). Similar overlapping of markers for different QTLs
was reported in rice [23].

marker, RG191, identified through single marker analysis
is also part of the two flanking markers associated with
silicon content on chromosome three. However, to
classify a cluster of QTLs, usually identified through
single marker analysis, either as one QTL or more
than one QTL requires further saturation and fine
mapping in this region with additional DNA markers.
This can also be simplified by interval marker analysis
also.

0.0399
0.0255
0.0017
0.0289
0.0081
0.0192
0.0293
0.01
0.014
0.0183
0.0129
0.0001
0.0198
0.0365
0.0169
0.0221
0.0258
0.0206

Proba­
bility

values

R2(% F
pheno- value
typic

variation}

Marker's Chromo-
name some

number

SI. QTLs
No.

1 qtSi-2 RG 544 2 4.9* 4.3553
2 qtSi-3-1 COO 87 3 5.8* 5.172
3 qtSi-3-2 RG 191 3 11.0** 10.4554
4 qtSi-3-3 RG 418A 3 5.5* 4.9432
5 qtSi-3-4 RZ 329 3 8.0* 7.3486
6 qtSi-3-5 RZ 284 3 6.3* 5.7023
7 qtSi-3-6 RZ 892 3 5.5* 4.9177
8 qtSi-4-1 RG 143 4 7.6* 6.9436
9 qtSi-4-2 RG 908 4 6.9* 6.3011
10 qtSi-5-1 RG 403 5 6.4* 5.7893
11 qtSi-5-2 RG 556 5 7.1 * 6.4587
12 qtSi-5-3 RZ 390 5 16.0** 16.6934
13 qtSi-5-3 RZ 556 5 6.3* 5.6439
14 qtSi-6 RZ 398 6 5.1* 4.517
15 qtSi-7-1 COO 497 7 6.61* 5.942
16 qtSi-7-2 RG 773 7 6.0* 5.4361
17 qtSi-12-1 RG 341 12 5.7* 5.1532
18 gtSi-12-2 RG 901 12 6.2* -5.5718

*:*Significance at 5 and 1 per cent, respectively

on chromosome number 3. Out of which, two QTL,
qtSi-3-2 (RG191) and qtSi-5-3 (RZ390) explained higher
percent of variation (11.0% and 16.0% respectively) as
scampered to others (Table 2). Similarly, a total of six
QTL were identified for Zinc content in rice seeds using
single marker analysis, one each on chromosome 1,
4, 5, 8, 9 and 11. The range of phenotypic variation
was 4.4% to 9.5%. The maximum phenotypic variation
was explained by RZ536 marker (9.5% R2) present on
chromosome 11 (Table 3).

1 qtZn-1 RZ 801 1 5.0* 4.8867 0.0295
2 qtZn-4 RG 908 4 4.8* 4.6465 0.0337
3 qtZn-5 COO 105 5 4.4* 4.0328 0.0403
4 qtZn-8 Amp_2 8 5.2* 5.0958 0.0263
5 qtZn-9 RG 451 9 4.6* 4.4941 0.0367
6 gtZn-11 RZ 536 11 9.5** 9.6676 0.0025

*:*Significance at 5 and 1 per cent, respectively
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