www.IndianJournals.com
Members Copy, Not for Commercial Sale

Downloaded From IP - 61.247.228.217 on dated 27-Jun-2017

Indian J. Genet., 68(4): 353-359 (2008)

RNA editing in CMS wheat: Influence of nuclear background leads to

differential editing on  orf 256

V. Jyothilakshmi **, A. Singh ?, K. Gaikwad °, Vinod *, N. K. Singh >and S. M. S. Tomar *

'Division of Genetics, Indian Agricultural Research Institute, New Delhi 110 012
*National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110 012

(Received: September: 2008; Revised: November 2008; Accepted: November 2008)

Abstract

RNA editing and cytoplasmic male sterility are two
important and correlated phenomenons in mitochondria
of higher plants. We investigated the occurrence of RNA
editing in orf 256, which is implicated in causing male
sterility in wheat in two different CMS lines carrying
different cytoplasms along with their fertility restored lines.
This study provides the first preliminary report of RNA
editing in orf 256 with greater frequency observed in a
fertility-restored line compared to male sterile line carrying
the T.timopheevi cytoplasm. In order to investigate whether
a similar process occurs in a line carrying the T.araraticum
cytoplasm, it was observed that the male sterile line
showed a complete lack of editing in  orf 256 whereas in
the restored hybrids there was an increase in frequency
of editing. Editing sites were also found conserved in both
the hybrids at 381 position of C residue indicating the non
random nature of editing especially under different nuclear
backgrounds. Thus RNA editing might be involved in either
causing male sterility or restoration of fertility in these
two systems suggesting that a common mechanism may
exist in these two different cytoplasms.
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Introduction

Cytoplasmic male sterility-fertility system is used in
heterosis breeding to produce hybrids. Cytoplasmic
male sterility (CMS) is a maternally inherited phenotype
characterized by the inability of a plant to produce
functional pollen. When mitochondrial DNA undergoes
rearrangement (natural or in a somatic fusion process)
to generate novel (ORFs) or chimeric genes that
produce abnormal polypeptides, which may interfere
with normal functioning of mitochondria [1], then
cytoplasmic male sterility (CMS) arises. However, the
nuclear restoration of fertility leads to either down
regulation or suppression of expression of these genes.
These restorer genes may act at different stages i.e., at

DNA level, transcription initiation, RNA editing,
translation or post translation. In wheat, even when both
parents are fertile [2], the CMS trait results from
incompatibility between Triticum timopheevi Zhuk.
mitochondria and T. aestivum L. nucleus. Plants are
restored to fertility by introducing nuclear restoration
genes derived from T. timopheevi[3]. Mitochondrial DNA
from Triticum timopheevi has a chimeric gene, orf 256
[4]. This gene is co- transcribed with cox/in cytoplasmic
male sterile plants and produces a 7-kDa protein, which
is not produced in fertile or fertility-restored plants [5].

RNA editing is a post-transcriptional process
involving the partial change of C residues into U the
process whereby messenger RNA is modified from the
sequence of the corresponding DNA template [6]. These
C to U changes lead to the synthesis of proteins different
from that of predicted gene. It is also reported that the
consequences of the RNA editing process are either
the modification of the coded information for some amino
acids or the generation of new initiation and/or
termination codons. In organisms where RNA editing is
active the protein sequence predicted from the gene
may be different from that of the mRNA translated
protein. In addition, they also aid in evolutionary process
by restoring the conserved codon identities [7]. As we
know that RNA editing is generally found in
mitochondrial genome and to a lesser extent in the
chloroplasts of higher plants, most of the mRNA in wheat
mitochondria as well as higher plants is edited [8]. The
T-urf in maize that causes CMS is an exception and it
consists mostly of 26sRNA sequences that are usually
not edited [9]. In wheat, Song and Hedgcoth [5] reported
that orf 256 transcripts from CMS and fertility restored
plants are additional exceptions and undergo no editing.
Nevertheless, no clear relationship between the in vivo
observed spontaneous CMS and a lower level of RNA
editing can be established [10].
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However, it has been reported that complete
editing of an atp6 gene may restore the fertility in CMS
lines of rice [11]. In sorghum, Howad and Kempken [12]
have shown that loss of atp6 RNA editing contributes
to or causes cytoplasmic male sterility. The effects of
nuclear background and tissue specificity on RNA
editing of the mitochondrial ATP subunits in fertile and
CMS wheat has also been reported earlier [10]. Although
partially edited transcripts were found in all cytoplasm,
a large number of partially edited clones were present
in CMS cytoplasm. In the euplasmic T.timopheevi all
clones were fully edited. Thus it proved that RNA editing
efficiency can be affected by tissue and nuclear
background. All this show a correlation between RNA
editing and CMS and the present study aims at
investigating the possible editing changes in orf 256 in
T.timopheevi and T araraticum cytoplasms.

Materials and methods

Material of study comprised of two hybrids viz., TMS
20/2338 x 2988R and arraticum CMS 2022 x 2995R
and their corresponding CMS lines viz., TMS 20/2338
and araraticum CMS/2022. These hybrids were
developed at Division of Genetics, Indian Agricultural
Research Institute, New Delhi. The cytoplasmic source
of the 1% hybrid is T. timopheevi and for the second is T.
araraticum which is closely related to T. timopheevi [13].

DNA and RNA were isolated from the flower buds
of these lines as they are rich in mitochondrial. DNA
was isolated according to the standard CTAB method
and RNA was isolated using TRIZOL reagent
(Invitrogen). Amplification of both DNA and RNA was
carried out using primer designed from mitochondrial
gene orf 256 that is responsible for male sterility. The
primers were designed internal to the coding region (orf
256 F: CCCGAAACTTGGTTTAGTA, R:
CTTCTAAGATCCTCCGACT) for amplification of 840
bp whereas the entire length of orf 256 spans 936 bp
[5]. Amplification of DNA through PCR was done at 95°C
for 3 min, 95°C-30 sec, 55°C for 30 sec and 72°C for a
minute x 35 cycles, followed by an incubation at 72°C
for 5 min using the high fidelity Tag polymerase from
MBI Fermentas. The PCR products were purified by gel
extraction kit QIAEX Il (Qiagen, USA) and cloned into
pGEM-T Easy Vector (Promega). Three positive clones
were picked from each line and sequenced. Sequencing
was done with the Megabace 1000 sequencer
(Pharmacia-GE) using the Dynamic ET Terminator cycle
sequencing kit (Amersham Pharmacia). RT-PCR was
done using the QIAGEN one step RT-PCR kit at 42°C
for 45 min, 95°C for 15 min, followed by the above
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mentioned cycling conditions. The sequences from
different clones was then merged using the software
MULTALIN and high quality consensus sequence was
obtained for each genomic and cDNA fragments.
Sequencing was patrtial for all cDNA clones but genomic
clones were sequenced completely. These genomic
sequences were then compared to the reported
sequence of orf 256 in the NCBI database (Acc. no
10332).

Results and discussion

C to U transitions in plant mitochondrial mRNA leads to
amino acid changes as well as to the creation of new
initiation or termination codons. To study the occurrence
of RNA editing in the orf 256, primers were designed to
amplify both genomic and mRNA sequences. High
fidelity Tag polymerase was used in PCR reactions to
minimize amplification errors. An 840 bp amplicon was
amplified from the 4 i.e. (1). CMS line TMS 20/2338,
(2), fertility restored hybrid TMS 20/2338 x 2988R (3),
araraticum CMS/2022A and (4), fertility restored hybrid
araraticum/CMS 2022x2995R (Fig. 1). The RT-PCR also
resulted in the same size amplification although a slightly
smaller cDNA was detected in lines 3 and 4 (Fig. 1).

The cDNA sequence was aligned individually with
orf 256 genomic sequence using the software LALIGN.
The scoring matrix was Blossum62 and gap penalty kept
as default at -4. The cDNA sequence upon comparison
with orf 256 in the four lines indicated a low level of C to
A changes (Table 1). A total of 5 editing changes were
detected in the line 1 over a span of around 547 bp of
high quality sequence. For the restored hybrid i.e. line
2, the editing changes were 8 over a span of around
278 bp of sequence. In line 3 i.e. T. araraticum CMS,
no editing changes were detected in the partial transcript
of around 356 bases whereas in the fertility restored
hybrid (line 4) the editing changes appeared in 6 C
residues in a 698 bp long cDNA sequence. Some editing
sites were found conserved in both hybrids at 381
position of ‘C’ residue (Fig. 2b, 2d).

The production of chimeric protein, extensive
recombination without creation of new orfs,
mitochondrial DNA deletions and eventually a decrease
or lack of RNA editing may be some of the multiple
causes of the CMS phenotype by lowering the capacity
of the mitochondria to furnish energy to the cell [14]. In
wheat, Song and Hedgcoth [15] reported that orf 256
transcripts from CMS and fertility restored plants are
exceptions to the rule that most mRNA in wheat
mitochondria is edited. In contrast to the previous report
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RT-PCR

Fig. 1. RT-PCR and PCR amplification of
and DNA isolated from bud tissues of CMS20/2338
(Lane 1), fertility restored hybrid CMS20/2338 x
2988R (Lane 2), T.araraticum CMS/2022(Lane 3)

and fertility restored hybrid
2022 x 2995R (Lane 4). M: 100 bp ladder (MBI
Fermentas)

that orf 256 is influenced by different nuclear
backgrounds, we did not get any transcript size
alterations in orf 256 on 2995R and 2988R background
of fertility restorers (data not shown). However, it was
observed that both CMS lines and fertility-restored lines
underwent differential RNA editing in different nuclear
backgrounds. It was observed that the CMS line of T.
timopheevi had 5 editing sites compared to 8 sites in its
hybrid. In the case of T. araraticum CMS which is a close
relative of T. timopheevi no editing sites were detected
where as its restored hybrid showed 6 editing sites.
Absence of editing of orf 256 in T. araraticum cytoplasm
might indicate the differential nature of orf 256 editing
in diverse cytoplasms. Similar behaviour showed by the
restored lines also might indicate the role of editing in
restoration of fertility with its frequency particularly high
in fertility-restored hybrids. Such results were also
observed in Sorghum [12] where mitochondrial atp6
editing was strongly reduced in anthers of the male
sterile lines whereas normal RNA editing was observed
in transcripts of fertile lines. Loss of atp6 editing
contributed to or caused male sterility in S. bicolor. Kurek
et al. [10] also reported about the effects of nuclear
background and tissue specificity on RNA editing of the
mitochondrial ATP subunits in fertile and CMS wheat.
Editing frequency also vary in mature as well as
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Table 1. RNA editing changes in cytoplasmic male sterile

and hybrid lines

orf 256 in RNA

T. araraticum CMS/

S.No. Name of line Sequence Position  No. of
length of ‘C’ ‘C’
residue residue
edited
1. T. timopheevi 547 283 5
CMS (TMS20/2338A) 319
462
604
621
2. Fertility restored 278 343 8
hybridCMS20/2338 364
X 2988R 381*
419
439
445
477
483
3. T. araraticum 355 None -
CMS arari CMS/2022A
Fertility restored 698 304 6
hybrid arari CMS 381*
2022 x 2995R 428
471
728
748

*Indicate the conserved editing ‘C’ residue

precursor transcripts in nad3 and rps12 genes in wheat
mitochondria [16] indicating that RNA editing efficiency
could be affected by tissue and nuclear
background.These post transcriptional processing
events may critically impair the coding region leading
to a start or stop codon, but more often creating an
internal codon with strong functional significance. Editing
may also lead to creation of alternate forms of the
polypeptide having an evolutionary effect on the
mitochondrial genome.

PPR (pentatricopeptide) repeat motif genes have
been reported to restore fertility in Petunia, Brassica and
rice by their action on target orf[17-20]. Except in maize
all other fertility restorer genes identified from plants
code for a PPR protein [21]. It has been reported that
such PPR proteins are also essential for RNA editing in
chloroplast [22] with which higher plants can manage
several hundreds of editing events in organelles. [23-
25]. In our study, the editing position was found to be
conserved in both hybrids at 381 positions. This is not
unexpected as it has been reported that certain C
residues have a higher tendency to undergo editing as
compared to others. Generally these do not result in
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180 190 200 210 220 230
TCTATTTGCACTTTTGTATTAAGTTTCCTTATATATACCGATTTTTTATTATTTTCTATTT

TCTATTT- CACTTATGTATAA——TNTCCTTATCTATACATTTTTCT————CTTTCTCTTT
10 20 30 40 50

240 250 260 270 280 290
GTCTATTTTTCTTTTTAGTGCGTTTTATTTCGATTATTCTTCT——CCCAATTTGCAATCT

A-CTATT--TCTATTTA- TGGGAAACA*fffGCATACTCTTCAAGCCA@CACAGCTACCT
60 70 80 90 100
300 310 320 330 340

TT**TCGGAGCCTCCTTC*ffATTATTACT CTTCCTCCAGAGATTCAGG--ATCCCCAA

ACCCTCGGATCCTTCCCCCCGATCCTTQATACTTCCCCCGGAGAAACAGNGAAAGCCCCA

110 120 130 140 150 160
350 360 370 380 390
GCTC--TAGCTCATTTAGC-AGGGCTA-AACTTC----- TATCT-GAGCCTTTACGAGCA

GCTCCGTAGCACATATGTCCAGGGCTGGAACTTCGACGCTACCTCGACCCTGTACGGGCA

170 180 190 200 210 220
400 410 420 430 440
G-GATCCT-GGATGGGT----- TACGTT-CATTCAGAACGAGCT-TAATCACAATACCCC

GCGATCCTAGGATAGGGCCCTATACGTTTCATTCAGCGCCACCAATTACCTCAATACCCC

230 240 250 260 270 280
450 460 470 480 490
TC-TG- GAGGACATAC@TGGACGGCTTAAGCTCTTCC TAAT-GGAAGA----AAAGCTG

TCCTGTGAGCCGCAAAKTAGACAGCTTTAGCCTTTCCCTAATAGGAAGAGCTTAAAGCCG

290 300 310 320 330 340
500 510 520 530 540 550

T--CTAGTATG----CGACAAGATGTC-ATTCAGGAATTTGTGGCGCTTTATCAAAGAAT
TACCAGGTATCGCACCTACCAGAGGGGCTATTCTTGCGA-TATAGGCTACGTTCTGAATGAAC
350 360 370 380 390 400

560 570 580 590 600
AGGGCCTTATCTACCGATCGAGCCC———TACTTGGTCGATGAAGCGCT—TCGTTCFCTAT

fGTACCCCATCCAGGGATCCTGCTCCGGTACACGGCCTCAGATACGCAGTCATANGCCCT

410 420 430 440 450 460
610 620 630 640 650
CTGGfACCATATTCACGCAACTGATT 7777777 CTTTCACTGT-TCTCCAAGCGT-CTT-

CTGCTACCACATQNGCTCGGCAGCTTTAGGGGACTTCCTCTGGATCTCCTAGCGTACTTC
470 480 490 500 510 520

660 670
----ATCAAGATCT-GCGGGCA

GAGTATCN GATCTAGCGGGA
530 540

Fig. 2A
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330 340 350 360 370 380
crecacacaTTeacea-TcCocaracreracercart-TacCacecerarrctreTatCr
CGCCACARATTCCTCAGTCACC - —TCTNTGTCGCATACTAGAACAGCTTTNC TTCCATAT

110 120 130 140 150
390 400 410 420
————— GAGCCTTTA--CCAGCACG-AT- - -CCTG- - -GATCGCGTTACGTTCATTCAGA-A
AGGAAGAGCTTAGAGCCGTCCAGETATGTACCTACCAGAGGGGTATTGTGATTNCAGCTA
160 170 180 190 200 210

430 440 450 460 470 480
CGAGCTTAATCACAATACCCCTCTGGAGGACATACCTGGACGGCTTAAGCTCTTCCTAAT

CGTTCTGAATGAACGTAACCCA TCCCGGA——TACCTGCTCG———TAAGA@GCTA@AGAT

220 230 240 250 260 270
490
GGAAG
AGAAG
Fig. 2B
280 290 300 310 320 330

CTCCCAATTTGCAATCTT-TTCGG-AGCCT-CCT-TCATTATTACTCTT---CCTCCAGA

CTCCCTATTC CAATCTTATTCGGGAGCCTACCTATCACCATTTCCCTCTGGCCTCCCCA
10 20 30 40 50

340 350 360 370 380
GATTCAGGATCCCC-AAGCT-CTAGCTCATTT---AGCAGGGC--TAAACTT-CTAT-CT

CGTGCAGGTTCCCCCAAGCGACTTGCTCATATGTAAGCAGGGCCATACACTTACTATACT
60 70 80 90 100 110

390 400 410 420 430
~GAGCCTTTA--CGAGCAGGAT-CCT-GGAT-GGGTTACGT-TCAT-TCAGAACGAGCTT

AGGGCCTATATACGAGCAGGATACCTAGGATAGGGTTACGTATCATATCAGAACGAGCTT
120 130 140 150 160 170

440 450 460 470 480
AAT--CACAATACCCCT-CT-GGAGCGA--CATA-CCT-GGACGG-CT-TAAGCT-CT-TC

AAATACACAATACCCCTACTAGGAGGGACCATAACCTAGGACGGTCTATAAGCTACTATC
180 190 200 210 220 230

490 500 510 520 530
CTAAT--GGAAGAAAA-GCT-GT-CTAGTATGCGACAAGAT-GTC-ATTCAGGAATT-TG

CTAAATAGGAAGAAAAAGCTAGTACTAGTATGCGACAAGATAGTCCATTCAGGAATAATG
240 250 260 270 280 290

540 550 560 570 580
T-GGCGCTTTAT--CAAAGAATAGGGCCTTATC-TA--CCGATC-GAGCCC-TACT

TAGGCGCTTTAATACAGAGAATAGGGCCTTATCCTAAGCCGATCCGAGCCCCTACT
300 310 320 330 340 350

Fig. 2C
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120 130 140 150 160 170
o] AATAAAAAATGACAAATAT-GGTTCCGATGGCTCTTCTCCACTAGCAGGTTTACTGCT-TT
4 AATAAATGAGCATACATATAGGTTCGATGGCTCTTCTCCACTAGCAGGTTTACGGCCCTT
10 20 30 40 50 60
180 190 200 210 220 230
e} CTAT-TTGCACTTTT-GTATTAAGTTTCCTTATATATACGATTTTTTATTATTTTCTATT
4 CTCTATTGCTCTGAGCGCCTCAAGTTTCCTGATGTGTAC ATCTTGTCGCATTTTCTAGT
70 80 90 100 110
240 250 260 270 280 290
[e] TGTCTATTTTTCTTTTTAGTGCGTTTTATTTCGATTATTCTTC-~---TCCCAATTTGCAA
4 CGGCTTTTCTTCCTTTTGGTGCGGCTTATGCCGTCTCTGCTTCGCCCTCCCGZ—\TGGACAT
120 130 140 150 160 170
300 310 320 330 340
o] TC***TTTTCGGAGC@*ffTCCTTC ATTATTAC-TCTTCCTCCAGAGATTCAGGATCCC
4 CCCGGTTCTGGGAANCAGCTCCTTCCAAGAGAACGTCATCCTCCCGAGATTCCTGCTCCC
180 190 200 210 220 230
350 360 370 380 390 400
o] CAAGCTCTAGCTCATTTAGCAGGGCTAAACTT - CTATCTGAGCCTTTACGAGCAG——GAT
4 CCAGCTCTTGCTCAGATCGCATGGCTAGCCCTGCTAAATGAGCCGTTGCGTGCATATGAT
240 250 260 270 280 290
410 420 430 440 450 460
[e] CCTGGATGGGTTACGTTCATTCAGAACGAGCTTAATCACAATACCCCTCTGGAGGACATA
4 CCTGGATAGGCTACGTTCATTCGGAAAIGCGCCTTATCACACGACCCCTCTGGAGCGCGTG
300 310 320 330 340 350
470 480 490 500 510
e} CCTGGACGGCTTAAGCTCTTCCTAATGGAAGAAAA GCTGTCTAGTATGCGACAAGATGT
4 CCTGGGCGCAEAAAGCTCTTCCTAATCTAAGAAAACGCTGCCACAAATGCGACAGAATGA
360 370 380 390 400 410
700 710 720 730 740
o) TTAGAGATGCTGTTTCCCACAAC--CGG- GATCTCCT ———= TGAGGCGGAAAGCTCCGCA
4 TCAGATACGCTGTTTTCCC CTGCTCCGGTGAGCTNCTGCCCTTTGGGGGTC -= CTGGGAA
600 610 620 630 640 650
750 760 770 780
o) AGGAGGTGCCTGGAAGTGGAACAGAGGATCCGATGGGAAGA
4 AAATCTTCCCGGGCAAAGGAA-AGAGTATCTCCTGGGCGGA
660 670 680 690
Fig. 2D

Fig. 2. (A-D): Comparison of the sequences between (A)  orf 256 genomic(O) and cDNA of CMS line CMS20/2338A9
(1), (B) orf 256 genomic (O) and cDNA of fertility restored hybrid CMS20/2338A x 2988R (2), (C) orf 256
genomic (O) and cDNA of male sterile line  T. araraticum CMS2022A9 (3), (D) orf 256 genomic (O) and cDNA
of fertility restored hybrid CMS2022 x 2995R (4); Bold letters indicate site of editing changes
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any significant codon changes so as to keep the
polypeptide functional [26]. Since we did not have the
full sequences it remains to be seen whether the editing
changes are resulting in altered proteins and its status
in pre transcripts and vegetative tissues.
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